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1 Introduction and overview

Frequently occurring object parts or shapes are useful cues to help an autonomous agent
to recognize and reason about the contents of a perceived scene. The key idea is to detect
such patterns in a scene and together with learned configurations reason about the existence
of an object(class) in the imaged scene. An argument for such an approach is rooted in
the large intra-class variations of object’s visual appearance which render holistic approaches
inpractical. Here the assumption is that a decomposition in repeatable, frequently occurring
patterns can levitate this hard problem to arrive at application-level relevant performances.

We want to stress that we do not want to restrict ourselves to a search for and interpre-
tation of structural (physical) decompositions of objects, but rather try to identify frequently
perceived patterns that are often shared between instances of an object class. In a very general
setting, extracting the structural sub-parts of an object is hampered by the same problems
as the recognition of an object itself, namely high intra-class variability. Eg., table or chair
legs can occur in very different shapes, questioning the typical practise of approximating them
with geometric primitives (eg., cylinders).

We choose to attack the hard problem of furniture recognition by the use of different sensor
modalities which will later be combined to take advantage of their complementary nature while
mitigating their unique disadvantages. Note that we deal with the problem of recognizing the
class/category of viewed objects as opposed to identifying a specific instance (eg., recognizing
a certain chair the robot has seen before). In past literature, the later was often termed object
recognition, although mixed uses were and are very common. Note that in this report, when
not stated otherwise explicitely, the term object recognition refers to the recognition of an
object’s class.

The present deliverable describes the characteristics of the sensor modalities in use, as
well as the different approaches for the extraction of basic parts and entities of the robot’s
environment. Preliminary results are reported where available.

The rest of this paper is organized as follows: Sec. 2 describes the data sets collected
during the first year of the project. In Sec. 3 we give a short introduction into the features
and modalities used. Methods for the estimation of surface orientation and room layout are
presented in Sec. 4. Sec. 5 concludes this report.
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2 Data

The following sections give a description of the data sets which have been collected for the
purpose of off-line testing and training. While the bulk of the data consists of material we
have acquired using prototypical acquisition setups, we opted to include publicly available
databases and collections of images from the WWW for the following reasons:

• Available ground truth and performance reports of state-of-the-art algorithms helps
dissemination and comparison.

• Data unbiased by our own preferences w.r.t. data acquisition.

2.1 Wiry Object Recognition Database (WORD)

The Wiry Object Recognition Database (WORD) was created and is maintained by Owen
Carmichael [Ch04]. According to Carmichael wiry objects are

... distinguished by a prevalence of very thin, elongated, stick-like components;
examples include tables, chairs, bicycles, and desk lamps. They are difficult to
recognize because their shapes are complex and they tend to lack distinctive color
or texture characteristics.

Actually this characterization holds for many objects populating our everyday life, and as
already mentioned especially for pieces of furniture like chairs and tables making this database
highly relevant for the robots@home project. Of course, there are exceptions, such as eg. sofas
and armchairs, which often sport very distinct patterns on their upholstery. Howsoever, while
such patterns are very discriminative features useful for recognizing a specific instance of an
object (eg, the sofa I bought last year), their arbitrary nature renders them to be of little use
for classification.

The WORD data set provides a benchmark for evaluating shape-based object recognition
approaches, providing ground truth consisting either of binary (detected) edges or of polygonal
regions mapping onto the objects. A summary of WORD’s characteristics is given in 1,
example images can be found in Sec. 6, Fig. 42.

Object #images characteristics
Chair 116 full revolution in floor plane
Red chair 40 small shape deviation from chair
Cart 174 full revolution in floor plane
Ladder 1159 arbitrary out of image plane, seven different environments
Bicycle 151 three different poses, illumination changes, articulation
Clutter A 116 Office-like background environment
Clutter B 139 Office-like background environment
Clutter C 26 Office-like background environment
Stool 8201 taken in different office environments

Table 1: Characteristics of the WORD database.
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2.2 The LabelMe database

The LabelMe database and web-based tool for image annotation [RTMF08] is one of the
largest publicly available collection of images with ground truth labels. It is part of the com-
puter vision communities ongoing efforts to provide large amounts of labelled data facilitating
supervised learning of object classes and quantitative evaluation.

The LabelMe database provides a web-based annotation tool which allows visitors to an-
notate objects with polylines and arbitrary word-tags (such as, eg. car, windshield, stool, wall,
etc.). There is no enforcement of annotation guidelines - except the option for users to correct
annotations of others when desired. While annotation can only be carried out online, the
database can be downloaded and individual object databases can be compiled off-line using a
set of MATLAB tools.

For December 21, 2006, the authors reported the database to consist of roughly 111000
annotated polygons on 11845 static pictures and 18524 sequence frames with at least one
object annotated. Since that time the database has grown rapidly, currently holding at over
160000 images. A summery of objects of interest for the robots@home projects is given in
Tab. 2. Example images together with their ground-truth masks are shown in Fig. 43.

Object/scene #images notes
Chair 3692 indoor and outdoor images mixed
Sofa 394 indoor
Stool 71 indoor
Table 2924 indoor and outdoor images mixed
Cupboard 611 indoor
Door 3076 also contains car doors and gates
Window 11768 also contains car windows & building windows viewed from outside
Room 845 various room types with partially labelled furniture

Table 2: Relevant object and scene categories of the LabelMe database.

2.3 Single view image collection 1

This image set has been acquired by Horst Wildenauer using Google image search. It consists
of 1900 images showing pieces of furniture in typical domestic environments (eg., dinning
rooms, living rooms, kitchens) or against homogenous background (promotional images). 2500
chairs were manually annotated by bounding boxes, using the Matlab annotation tool shipped
with the Pascal Visual Object Classes Challenge 2007 kit(VOC) [EVGW+07]. Example images
are shown in Figures 1 and 53.

Figure 1: Examples from the single view image collection 1.
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2.4 Single view image collection 2

The second data collection has been created mainly for the purpose of testing the algorithms
for room-layout estimation.

Acquisition setup For this single view image collection, we used a standard consumer
digital camera. These images are high resolution images taken at a height of approximately
1.6 meters.

IKEA This image collection was created at the event together with the stereo sequences
at our visit to IKEA. The collection includes images of sofas, chairs and tables together
with complex real-world configurations like kitchens, living-rooms and children’s rooms. The
lighting includes tungsten light and daylight which was no problem for the standard consumer
camera but for our industrial cameras (see 2.5). A bigger snapshot of the single view image
collection 2 can be found in the appendix at Figure 44.

Figure 2: Examples of ikea single view image collection.

User provided domestic environments At the third robots@home meeting in Limoges,
we took the opportunity to visit the Legrand demo house and made some pictures for our
single view image collection. Figure 3 gives an idea of the images taken at Legrand. These
images are not only for testing our algorithms, but also for planning future visits with James
at the demo house for reduction of setup time.

Figure 3: Example images of the legrand single view image collection.

2.5 Stereo sequences

As stated in the project proposal, several sensor modalities including stereo will be used in
this project. In addition to the dense stereo data coming from the embedded stereo system,
supplemental algorithms have to be tested for object avoidance, object recognition and object
categorization.
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Acquisition setup These stereo sequences were taken with a stereo setup consisting of a
imaging source color camera (DBK 31AF03) and a imaging source monochrome camera (DMK
31AF03). The cameras were mounted on our robot at about 1.6 m above ground. The setup
was calibrated before and the calibration data was saved together with the image data. To
cope with the changing lighting environment - tungsten light and additional daylight through
several windows on the ceiling - the cameras were configured to automatically adjust to the
changing lighting conditions resulting in varying brightness along the image sequences. The
absence of a IR-cut filter resulted in wrong colors in the color images. Our robot ”James”
with the stereo systems mounted on, can be seen in Figure 4(c).

The acquired data consists of a color image, a grayscale image, the configuration file and
the computed disparity for the stereo setup. A typical stereo scene at IKEA can be seen in
Figure 4(b) where the cameras look down to a table with chairs. As it can be seen easily on the
disparity image, dense stereo is not the input modality of our choice for object categorization.

(a) Left image of the stereo setup. (b) Disparity of the scene. (c) James

Figure 4: Dense stereo and James.

IKEA The first field test for our robot was the two-days event at IKEA. One important task
was to show the robot to the press, but the second task was much more important: Get as
much data as possible. We recorded 167 Gigabyte of data. Most image sequences were taken
by not autonomously driving around with the robot. A big snapshot of this huge amount of
data can be found in the appendix in Figure 51.

To get test data which is as near as possible to reality, we also recorded sequences with the
robot navigating autonomously. A snapshot of this data can also be found in the appendix
at Figure 50. To give an idea of the living room the robot was driving in, Figure 5 shows a
panoramic view of the environment.

Laboratory In the course of testing the object avoidance capability of the robot, we also
recorded about 20 stereo sequences of moving towards furniture with the robot. The stereo
system was also placed at a height of about 1.5m above ground. The furniture includes an old
table, a chair and a couch chair which can be seen in Figure 6.
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Figure 5: Panoramic view of the test-environment for autonomous data aquisition.

Figure 6: An example of the stereo sequences.

2.6 Trinocular image collection

Testing several algorithms and trying to get good results, we shortly found out that single
view images and stereo images with a color and monochrome combination may maybe not be
enough for finding the right method for obtaining basic structures for our task. Therefore, a
setup was constructed which could deliver color stereo and trinocular images.

Acquisition Hardware The setup consists of three Imaging Source firewire cameras, two
color cameras (DBK 31AF03) and one monochrome camera (DMK 31AF03), all with a res-
olution of 1024 by 768 pixel. As lenses we use three low-cost (about 20 each) 2.5mm mini
s-mount lenses with a CS-2-C-Mount Adapter and C-2-S-Mount Adapter. The lenses have
a horizontal field of view (fov) of about 140 degrees and a build-in IR-cut filter, which is a
must-have, because our cameras are not equipped with an IR-cut filter.

Figure 7: A low-cost wide-angle S-mount lens with adapters from CS to C mount and from C
to S mount.

Acquisition Setup The configuration of the setup enables a dual-use of the sensors. At one
hand it can be used as a standard trinocular setup and on the other hand, the two color color
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cameras can be used as a standard stereo setup. The reasons and advantages of a trinocular
setup will be explained later in section 4.3. The system was calibrated using a standard matlab
toolbox [Bou07], but as this toolbox cannot calibrate trinocular setups, the multicamera self
calibration tool from Tomas Svoboda [SMP05] was used. The arrangement of the cameras
and the according baselines can be found in figure 8(a). As the final dimensions fo the robot
and the final mounting of the camera setup is not known, we decided to test various scenarios.
In Figure 8(b) the three different poses for acquiring the images can be seen:

1. This is a good imaging setup with cameras at a height of about 1.5 meters which enables
such a setup to look on a standard table (74cm height) with a top view (cameras tilted
towards ground). This setup has another advantage: Most other image databases are
also acquired from a standard human observer level, and can therefore easier be used.
In general, acquiring data from a familiar pose and therefore having a priori knowledge
of the environment, helps algorithms to perform better. [HEH06]

2. This setup mimics a small child. Cameras are at a height of about 31cm above ground.
The cameras are tilted to look slightly upwards.

3. This setup was chosen to combine both advantages from setup (1) and (2): The height of
about 92cm is just enough to look on a table and of course look downwards to chairs and
sofas but without the need to create a mounting high above the robot. Mounting the
cameras near to the wheels also reduces swinging and therefore enhances image quality.

(a) Arrangement of the three
cameras. DBK = Bayer,
DMK = Monochrome

(b) 3 different poses for image aquisition

Figure 8: Camera setup for Image Aquisition.

Laboratory image collection To provide a realistic test environment, we have created a
living room in our laboratory, consisting of seven different chairs, three sofas and five tables
sponsored by IKEA. Some additional furniture like book shelves, cupboards, desks and office
chairs are also present. Figure 13 to Figure 15 show our test furniture in our laboratory. To
give an idea of the quality and appearance of the images, figure 9 shows a sample scene of
a chair taken with the setup described above. This trinocular laboratory image collection is
used as test set in section 4.3.3.A bigger snapshot of the image collection can be found in the
appendix at Figure 52.
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(a) Left (b) Right (c) Gray

Figure 9: Images taken with the trinocular setup. The high radial distortion is apparent.

2.7 Range sensor data

For recording range sensor data we used the time-of-flight camera SwissRanger 3000 manu-
factured by the Swiss company Mesa Imaging1 (Fig. 10). It has a resolution of 176x144 pixel,
25344 pixels in total. It should be noted that under the current circumstances this sensor is

Figure 10: Mesa Imaging’s time-of-flight camera SwissRanger 3000

not ideal for robots@home due to these reasons:

• With a price of some 6000 Euros (exclusive taxes) for a single sensor it is too expensive
for the desired low-cost robot system

• The field of view is rather small (47.5 x 39.6 degrees), so that the distance to objects
has to be large (about 1.5m to 2.0m) in order to see the whole object or at least the
bigger part of it. However, “typical” domestic environments are quite cluttered and
often there’s only little space to navigate

• The sensor requires active cooling (using a fan), which makes it noisy

• The SwissRanger is an active sensor. Two sensors of the same make interfere with each
other. Besides, the emitted IR light’s intensity is limited so that only short distances (a
few meters) can be measured with sufficiently small uncertainty – the intensity of the
light reflected by objects further away is low and therefor the measurement noise is high

Nevertheless, compared to normal cameras the SwissRanger has also advantages. Being an
active sensor, it does not require a well-lit environment – it even works in complete darkness.
Furthermore, there is no need for the environment to be textured as the camera measures the

1http://www.mesa-imaging.ch/

10



time the emitted IR light takes to travel to the objects and back again. Unlike stereovison,
the SwissRanger works well on unichrome surfaces. The (uncalibrated) range measurement
of each pixel is directly done by the sensor hardware, the computation of the calibrated 3D
data – performed by the driver on a PC – requires only little CPU time. By lowering the
integration time, framerates of up to 50fps can be achieved. To keep measurement noise low,
framerates of around 20fps are more adviseable, though.

As mentioned above, currently the sensor is not suitable for letting the robots@home plat-
form depend on it, but the technology [Kah07] is promising and and well worth investigating.
Also, it has the potential to be low cost as the ZCam from 3DV Systems2 demonstrates.

Figure 11: SwissRanger 3000 mounted onto a mobile robot. X and Z of the camera coordinate
system are parallel to the floor plane. The center of the camera coordinate system is about
35 centimeters above the floor

Acquisition setup One of the recurrent questions in service robotics is where to mount the
sensors for optimal results. On the one hand, sensor placement has to be suitable for the tasks
of obstacle avoidance and self localisation, on the other hand there are constraints given by the
size of the robot. For example, for a coffee-serving robot with a total height of fifty centimeters
it’s hardly feasible to mount a camera at a height of 1.3 meters. In the MOVEMENT project3,
the maximum height for mounting sensors was about forty centimeters to enable the mobile
platform moving under a chair or table in order to dock with it.

As acquisition setup we have chosen a setup similar to MOVEMENT, with the X- and
Z-axis of the camera coordinate system parallel to the floor plane and in a height of about 35
centimeters above the floor (Fig. 11).

Laboratory During the event at IKEA no data could be recorded with the SwissRanger
3000 as the time was too short to fully integrate this sensor into the acquisition software.
Therefore, one office at ACIN was refurnished using IKEA furniture only, in order to create
an in situ testing location (Fig. 12). Several series with 300 frames each were recorded while
the mobile robot was moving through the office.

Every recorded frame comprises a timestamp, the raw (i.e. uncalibrated) range measure-
ments, the amplitudes and the calibrated 3D data. Fig. 16 shows the visualisation of several
example frames. The left column shows the amplitudes values. The raw data are 16bit un-
signed integers – for better visibility, these have been squareroot-scaled and the resulting 8bit
images have been normalised. The middle column shows the depth values, i.e. the Z-coordinate
of the 3D data. Again, for better visibility the images have been normailsed. Finally, the right
column shows the 3D data. The coordinates are represented in the form of signed 16bit integer
triples, the unit is millimeters.

2http://www.3dvsystems.com/technology/tech.html
3European Union project MOVEMENT #IST-2003-511670
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Figure 12: Office at ACIN, refurnished as in situ testing location

Figure 13: Test chairs from Ikea: Klapsta, Harry, Stefan, Ivar, Morits, Olle, Terje.

Figure 14: Test tables from Ikea: Ingo, Lack, Lack, Liden, Mikael.

Figure 15: Test sofas from Ikea: Lillberg, Klippan, Klobo.
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Figure 16: Several examples of amplitude, depth and 3D data recorded with the Swissranger
3000
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3 Basic features and modalities for furniture recogni-
tion

3.1 Superpixels

The concept of superpixels was originally proposed by Xiaofeng Ren and Jitendra Malik in their
seminal work on the learning of classification models for image segmentation [RM03]. Here,
the key idea is to replace the pixel representation of an image by local, coherent, and structure
preserving image regions. These are typically obtained by over-segmentations adopting the
following considerations:

• Intra region properties

– Brightness similarity

– Texture similarity

– Weak contours inside region

• Inter region properties

– Brightness dissimilarity

– Texture dissimilarity

– Strong contours along the separating region boundary

• Curvilinear continuity

– Boundary smoothness

On of the main advantages of superpixels is that they offer a low-complexity image repre-
sentation while still trying to retain the information necessary (eg., respecting segment bound-
aries [RM03]) for further processing steps (such as, eg., image segmentation [MP07, WMV07],
object classification [RES+06], geometric surface context estimation [HEH05, HSEH07]). For
typical images the number of superpixels ranges in the range of hundreds to thousand, which is
more then several orders of magnitudes lower than the average number of pixels. In contrast,
simply reducing the image size and building on pixels to avoid complexity as implemented in
many approaches leads to losing details and high texture frequencies.

In our work, see Sec. 4.2.3, we utilize the efficient Minimum-Spanning-Tree (MST) based
colour segmenter described in [FH04]. This method facilitates Kruskal’s algorithm on a
(pixel) grid graph, merging regions based on a region-size to intra/inter-region colour similar-
ity/dissimilarity criterion. Typical computation times are about 0.5 seconds for a 800x600x3
image, where a significant portion is consumed by pre-smoothing and the construction of the
grid graph. Examples of the results obtained with this algorithm are given in Fig. 17. Note
how the superpixel boundaries nicely follow object boundaries and surface discontinuities.

3.2 Finding straight line segments

Edge detection We compute pixel gradient strength and orientation using Gaussian deriva-
tives, as suggested by Canny. Prior to this step, images with less then one Megapixels are
up-sampled by factor two, which substantially increased the number and quality of lines seg-
ments detected in the whole process [Köt03]. Gradient computation is followed by adaptive
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Figure 17: Superpixel over-segmentation of images taken at Legrand,s using the method of
Felzenszwalb [FH04]. Superpixels detected in an image. Right: Original image with superpixel
boundaries overlaid.

hysteresis-thresholding with a conservative upper threshold at 50% of the image gradient en-
ergy, and edge-linking with subpixel accurate non-maxima supression.

Due to the relative low adaptive thresholding on the gradient energy, the proposed ap-
proach produces overly rich populated edge images - increasing the amount of spurious edges
considerably. This however has the advantage that relatively low contrast edges at surface
orientation discontinuities (eg. the edge between two joining walls) that give rise to stable,
long enough line segments are still accepted.

Line segment extraction For the extraction of straight segments from edges we perform
the following steps

1. Splitting of linked edgels at junctions (detected by a simple and efficient morphologic
operation) into separate edge segments.

2. Subdivision of linked edgels into approximately straight line segments using the iterative
scheme, as implemented in Peter Kovesi’s MATLab Toolbox [Kov].

3. Finally, line segment parameters (midpoint, endpoints, and orientation) are obtained by
a total least squares (TLS) fit (see, e.g. [KZ02b] to the pixel coordinates of the edge
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segments.

Finally, low quality line segments, i.e. those shorter than 20 pixels, or with a small eigen-
value of the pixel-coordinate covariance matrix larger 0.3 are rejected. For the majority of our
test images, this step reduced the clutter considerably, as noisy edges are unlikely to be well
approximated by long straight line segments.

Depending on the size of the image and the structure of the imaged scene, one typically
obtains line segment numbers in the order of several hundreds. An example of the typical
outcome of the line detection stage is shown in Figure 18.

Figure 18: Example of the line detection process. Original image, edge image, and line
segments.

Comments on the used edge splitting technique In literature a vast number of tech-
niques for polygonalising curves exist and a thorough discussion is beyond the scope of this
paper. However, the idea common to most of the methods is to detect high curvature points
along a curve which are then used to split the curve into a piecewise linear approximation.

In our work, we adopt a simple and computationally efficient scheme similar to the one
proposed by Lowe [Low87]. Splitting points are detected by finding the point on a curve with
maximum orthogonal distance from a line segment connecting the endpoints of that curve,
see Fig. 19. The splitting is iterated until no more points with a deviation above a predefined
threshold (typically 1.5 - 3 pixels) are found.

In contrast to our method, Lowe and later Rosin and West [RW95] use a recursively
defined normalizing measure of line segment significance to obtain a scale invariant curve
polygonlisation (ignoring discretisation effects). In fact, this favourable property often drove
researchers (eg. [Zil07] to use this method for straight line extraction. However, we found that
its application did not give the expected benefits in our problem domain, as it only holds for
closed curves which seldom occur in real images.

3.3 Dense stereo

The main problem in dense stereo to face is the acquisition of accurate disparity or depth
data. While recent advances in stereo methods improved global matching and the ability
to handle occlusions, these methods are time consuming and not feasible for mobile robot
applications [Bro03]. Even under good circumstances, the accuracy of typical disparity (and
depth) images contain rough or wavy surfaces with missing or spurious data points. With the
increase of computing power of general purpose PCs, there are now methods available that
produce disparity images at frame rate [Bro03]of 15Hz. A typical disparity image of a scene
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Splitpoint

Figure 19: Approximating an edge by line segments. An edge is iteratively split at the point
of maximum deviation from a line segment connecting its endpoints.

in a living room is given in Fig. 20(b). The wavy structure picked up due to relatively little
or no texture can be seen clearly. However, most tables and floors exhibit little texture, such
that mobile robotics needs to cope with this situation.

(a) A typical scene where laser range finders have
difficulty to detect the table.

(b) A typical disparity image: the data points are
viewed from the side. The purple, nearly vertical
line is the estimated normal to the ground plane.
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4 Estimation of geometric surfaces and room layout

In this section we describe techniques for planar surface detection and room layout estimation
developed in the first year of the robots@home project. Specifically, we focused on: (a)
Monocular cues for detecting homogeneous planar patches and their orientation, as well as
camera orientation w.r.t. to a imaged room. (b) Plane extraction using a Trifocal tensor-
based approach. (c) Dense stereo for ground plane estimation and simple furniture detection.
Additionally, a brief glimpse at the possible application of range data-based methods, planned
for the future course of the project, is given.

4.1 Camera orientation and line segment grouping from vanishing
points

Man-made environments generally exhibit strong regularity in structure and often many par-
allel lines are present. In such settings, vanishing points and lines provide useful visual cues
for deducing information about the 3D structure of the imaged scene. In fact, assuming a
calibrated camera, with the detection of vanishing points and vanishing lines, the relative ori-
entation of imaged lines and planes w.r.t. to the camera and vice versa is uniquely determined.

Furthermore, if two or more vanishing points are found of which the underlying structure’s
orientations are assumed to be orthogonal, then, taking mild assumptions 4 internal camera
parameters can be determined by solving a set of linear equations. Three vanishing points
allow for the estimation of the focal length and the principal point. Using two vanishing points
only the focal length can be estimated (the principle point is assumed to be in the centre of
the image)

As a consequence of these facts, the problem of reliably finding vanishing points has been
addressed numerous times in the past. E.g., for the case of a calibrated camera, a pre-
ferred representation is the Gaussian sphere, used as accumulator space for Hough-based
approaches [MA84, AT00, BO91].

Although a calibrated acquisition setup can be taken for granted on our experimental
platform, we will also also deal with the uncalibrated case. This enables us to access the
rich set of publicly available, annotated data collections, allowing for comparisons with state-
of-the-art techniques, and helping to obtain performance assessments unbiased by our own
preferences w.r.t. data acquisition.

In our work, we reconsider approaches that try to exploit the so-called Manhattan world
assumption [CY03]. It is most closely related to the work of Kosecka and Zhang [KZ02b], who
exploit orthogonality by grouping line segments in a hypothetical calibration setting. We use
a refinement scheme similar to theirs, but show that dominant structures can even be found
in complex settings, when the method is properly initialized and the grouping is carried out
in a data-driven manner.

4.1.1 Finding vanishing points using line segments

Here, the idea is to repeatedly generate vanishing point hypotheses through the intersection of
lines. Intersection points having a large enough set of lines pointing towards them, are likely
to be true vanishing points and are reconsidered in further processing stages.

In our approach, we follow the work of Pflugfelder and Bischof [PB05], and Aguilera et
al. [AGLF05] and use a RANSAC-based initialization scheme.

4Assuming zero skew and unit aspect ratio
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RANSAC-based line clustering Since the actual mixture fraction of lines belonging to
different vanishing points is unknown, we adopt the adaptive variant proposed in [HZ04].
Specifically, we run the algorithm several times over the dataset and successively remove the
largest found inlier set from the data before the next trial. After each trial, the vanishing point
position is refined by applying Kanatani’s renormalization scheme [KS05] to the respective
consensus set. We reject newly detected vanishing points if they lie within the uncertainty of
previously detected ones utilizing the test statistics proposed in [PB05]. Here, however, we
adopted the vanishing point covariance matrices obtained by renormalization. The iteration is
stopped, if no more consensus sets with a cardinality above a predefined threshold are found,
or when a predefined number of vanishing point candidates Kmax is reached. We found that
Kmax = 20 gives a good balance between adequate exploration and computational cost for the
following processing stages, and consequently used it all our experiments.

For sake of completeness, we want to mention that we do not utilize the χ2 test statistics
(described by Hartley in the same reference above), since we want to minimize the chance of
removing a true outlier (which could be an inlier for an other vanishing point) from the data.
Instead, a experimentally determined threshold was used.

Line error model To quantify the error of a line segment meeting a vanishing point, an ideal
line from the segment’s midpoint to the vanishing point is constructed and the normal distance
of one segment endpoint to this line is measured. Formally, this distance can be written as
d2(ai, āi), where ai is the measured line segment endpoint, and āi is its root point on the ideal
line. Hence, shorter line segments are allowed to exhibit stronger angular deviations than
longer ones.

The described model is based on the assumption that there is little variation in the midpoint
of the line segment, as it is the mean of the involved pixel positions. For examples of the use
of other error models, we refer the interested reader to [Rot02, Lie01].

Candidate selection & camera calibration Depending on the complexity of the scene
the described clustering typically results in numbers of three up to Kmax vanishing point
candidates. From this set we exhaustively select vanishing point triples and retain only those
with approximately orthogonal projective rays. Finally, from the remaining triples the one
having the largest total consensus set is chosen as the final estimate of the dominant orthogonal
structure.

In the case of unknown internal camera parameters, the camera calibration necessary for
the orthogonality test can be carried out individually for each triple of vanishing points. For
this we have chosen the composite calibration method described in [KS05], assuming square
pixels and the camera’s principle point to be located in the center of the image. Our experi-
ments have shown that a further refinement of its position often caused unstable calibration
results, thus we did not consider it further.

Comparison to other known methods In preliminary experiments, we compared our
method to implementations of two state-of-the-art methods [KZ02a, WV07] provided by the
authors. We found our algorithm to give qualitatively comparable results to the latter, how-
ever usually running five to ten times faster. Both methods performed favorably in compari-
son to [KZ02a], which sometimes missed vanishing points in cluttered or not Manhattan-like
scenes, see Fig. 20.
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Figure 20: Comparison of the method [KZ02a] and our proposed algorithm on an image
of a cluttered scene. Line sets corresponding to each of three detected vanishing points,
differentiate by color, are shown. Notice that the orthogonal set of vanishing points, depicted
by memberships of lines to them, was estimated incorrectly by the method [KZ02a], but
correctly by our algorithm. White lines in the left image correspond to noisy lines, not
associated with any vanishing point.

4.2 Monocular surface orientation estimation

In this section, we describe a novel approach devised to help a robot to understand the content
of a scene, given a single image. To be more specific, we propose a method for decomposing
a single monocular image, possibly stemming from an non-calibrated camera, into orthogonal
planes, see Fig. 21. Finding these planes in the image can significantly aid a robot in self
localization, navigation and further recognition of objects or landmarks dominating indoor
environments, such as windows, doors, tables, chairs, etc..

A priori, we design a method for a non-calibrated acquisition settings to be able to also
handle cases for which either the internal camera parameters are unknown, or are likely to be
imprecise. In experiments it is shown that the method is able to extract a significant amount
of structural information from a single monocular image. However, a later merging of entire
image sequences will greatly contribute to a stabilization of the whole process.

The general concept of the proposed chain is related to previous approaches [KZ05,
LMS+06, RLK05, HEH07]. However, we formulate the problem in a probabilistic graph-based
framework allowing to solve it on a more global level than before. The paper is in its spirit
and goals most similar to the recent state-of-the-art work of Hoiem et.al. [HEH07]. They use
learnt appearance models based on various geometric, color, and texture cues to partition an
image into coarse 3D surface entities. We show that even without learning and by applying
less cues we can still compete with their method and often get better results.

4.2.1 Algorithmic overview

We shortly summarize the main steps leading to the final detection of orthogonal planes in a
monocular image. The algorithm consists of sequential steps for the detection of

1. lines and vanishing points coming from their intersections as the largest total consensus
sets corresponding to orthogonal directions.
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2. quadrilaterals or their parts corresponding to rectangles or their parts in a scene.

3. orthogonal planes in a scene based on an MRF framework formulated on over-segmented
image; utilizing vanishing points, ideal lines and quadrilaterals.

4.2.2 Detection of perspectively distorted rectangles

Human made environments contain many rectangular structures. These, depending on occlu-
sions and the camera’s field of view, are projected as complete quadrilaterals or incomplete
parts (e.g., U- or L-shaped features) thereof. Such features represent strong visual cues for
the detection of planar surfaces and consequently are of aid to the task of scene reconstruction
and understanding.

In our work we use a perspective rectangle detection method related to the approach
of [KZ05], however, applying a probabilistic graph-based method. To be more specific, we
formulate the problem as a search for the Maximum Aposteriori Probability (MAP) solution
of the MRF defined on lines consistent with the vanishing points. Such formulation allows to
avoid an exhaustive search over rectangle hypotheses coming from all possible intersections
of detected lines in the image. Besides its efficiency, another advantages of our approach is
that it does not only detect perspectively distorted rectangles, but also sub-parts if they are
compatible with the initial plane-hypothesis. However, if necessary it can be replaced with
other techniques, such as the one presented in [LMS+06, HLD07]. For an example of the
features found, see Fig. 21 and Fig. 48.

For the sake of simplicity, we will omit algorithmic details in the following description of
the method in use. The interested reader is referred to [MWK08] for a thorough presentation
of the technique.

MRF-based rectangle detection The main steps of our method are the following.

1. Line segments and vanishing points are localized and if necessary used for camera auto-
calibration.

2. Each line segment is assigned to its corresponding vanishing direction and line segments
compatible with a vanishing line, i.e., the two vanishing points generating it, are grouped
by principles of proximity and continuity.

3. A graph representing the MRF is constructed from the detected line segments respecting
vanishing direction assignment and geometric properties between pairs of the neighbour-
ing lines; encoded via data and smoothness terms.

4. The MAP is computed yielding a unique label, representing one of four rectangle edges,
assigned to each line segment such that meaningful rectangles are established.

4.2.3 MRF based plane detection

Having detected vanishing points and lines pointing to them we want to assign to each pixel in
an image its 3D orientation w.r.t. to a camera coordinate system. As we assume a Manhattan
world structure, this is equivalent to assign one of three labels, where each label corresponds
to one of three orthogonal planes, to each pixel.

To solve the problem on a global level, i.e. to allow to take into account prior information
about possible pixel orientations and relations between neighboring pixels simultaneously,
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(a) (b)

(c) (d)

Figure 21: Proposed sequential chain leading to detection of orthogonal planes in a monocular
image. (a) The input image (844×1126 pixels) with vanishing lines depicted. (b) Detected
lines consistent with three automatically estimated orthogonal vanishing points. (c) Detected
partial and complete quadrilaterals utilizing the vanishing points and lines pointing to them.
(d) Final segmentation of planes based on a Markov Random Field formulation employing
vanishing points, lines, and quadrilateral segments.

we formulate the problem in a fully probabilistic framework; as searching for a maximum
posterior (MAP) configuration of the Markov Random Field (MRF) [YFW05]. It has been
shown [Wer07] that the solution can be found as a Gibbs distribution with maximal probability,
i.e., by solving the so called labeling or Max-sum problem of second order - maximizing a sum
of bivariate functions of discrete variables.

We assume an MRF, i.e., a graph G = 〈T , E〉, consisting of a discrete set T of objects (in

the literature also called sites, or locations) and a set E ⊆
(|T |

2

)
of pairs of those objects. Each

object t ∈ T is assigned a label xt ∈ X where X is a discrete set. A labeling is a mapping that
assigns a single label to each object, represented by a |T |-tuple x ∈ X |T | with components xt.

An instance of the Max-sum problem is denoted by the triplet (G,X ,g), where the elements
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xt==3
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Figure 22: An example 3×4 grid graph G for |X | = 3 labels with symbols explained in the text.
A labeling L, i.e. solution, from Eq. (2) is shown by a red thick subgraph. Image provided by
courtesy of T. Werner [Wer07].

gt(xt) and gtt′(xt, xt′) of g are called qualities. The quality of a labeling x is defined as

F (x |g) =
∑

t

gt(xt) +
∑

{t,t′}

gtt′(xt, xt′). (1)

Solving the Max-sum problem means finding the set of optimal labellings

LG,X (g) = argmax
x∈X |T |

F (x |g). (2)

Graph entities Generally, the most difficult problem and art connected to MRF based
methods is to encode all possible priors about objects being labeled (e.g., orientation, texture,
color, shape, appearance) into a graph, i.e., a MRF, while still keeping the problem tractable.
The priors we utilized lead to partitioning an image into geometrically and color coherent
regions as Fig. 21 shows.

We build a graph on an over-segmented image, i.e., on superpixels, see Fig. 23, to keep
the running time in reasonable bounds. The idea is to locally merge pixels with similar color
together. The use of superpixels significantly reduces the number of objects in the graph, still
preserving texture information. Simply reducing the image size and building an MRF on pixels
to avoid the large complexity as implemented in many approaches leads to losing details and
high texture frequencies. In this paper, we use the fast Minimum Spanning Tree based method
by Felzenszwalb [FH04], giving us, by appropriate setting of parameters, 500-800 regions on
average. However, any other over-segmentation can be used.

The graph entities are the following. The superpixels represent objects, i.e. the set T , in
the graph and edges, i.e. the set E , are established between each two neighboring superpixels.
The number of nodes (labels) K is 4, i.e., we use one label for each orthogonal plane and one
label for “undecided” to allow the solver mark the places where there is not enough information
to decide which plane the superpixel belongs to.
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Figure 23: Left: Superpixels detected in the image from Fig. 21. Each region corresponds to
one object in the constructed graph. Right: The smoothness term. Boundary-color encodes
the penalty set in the graph between the objects corresponding to two neighboring superpixels.
Darker coloring denotes less penalization. Note, that straight boundary segments are penalized
stronger.

Each edge gtt′(xt, xt′) and each object node gt(xt) is set accordingly to the smoothness
and data term respectively, described in the following sections. After building and setting the
graph, the Max-sum solver [Wer07] is run to obtain a particular label xt for each superpixel t.

Smoothness term The smoothness term, defined by gtt′(xt, xt′), controls the mutual bond
of neighboring superpixels. In our case we take into account a color difference between super-
pixels and a straightness of the common boundary. It can be written as follows

gtt′(xt, xt′) = exp
(
α‖ut − ut′‖2

)
− β Sst

tt′ , (3)

where ut is a 3-element color vector of the t-th superpixel (mean color of all pixels belonging
to that superpixel) and α < 0 is a parameter pre-set to −10. We represent ut in the Lab
color space because of the perceptual non-uniformity of the standard RGB space. Sst

tt′ =
PN

i length linei

length boundary is a sum of lengths of N lines fitted to the shared boundary between two

superpixels t and t′ (longer than 20 pixels), see Sec. ??, normalized by the length of the
boundary. The parameter β controlling the influence of the smoothness term, was set to 0.5
in our experiments.

The proposed smoothness term in Eq. (3) penalizes connections between superpixels with
similar color and jagged boundaries less, thus tends to merge them. Such jagged boundaries are
usually produced accidentally due to weak gradients [FH04] and therefor do not correspond to
real splits of two superpixel patches in the scene. Thus, it is preferable to force their merging.

Data term The data term gt(xt) encodes the quality of assigning a label x from the set X
to an object/superpixel t in the graph. The quality measures how the superpixel itself suits
to particular class models, in our case, to lie on one of the orthogonal planes.

For each superpixel we need to set 4 numbers, i.e., how likely is that the superpixel is
marked by one of four labels. The first three labels stand for the belief that a superpixel lies
on one of the three orthogonal planes; the forth label encodes the level of “undecidedness”.
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The consistency of a superpixel to a plane is expressed via a deviation of gradient orienta-
tions of the pixels along the boundary of the superpixel to two vanishing points corresponding
to that plane. For computation of the gradient orientations we use the 5-component gradient
mixture model described in [CY03]. For each image pixel, the model gives the probability
of the pixel lying on an edge, the membership to one of the three vanishing points, and the
probability of being noise, i.e., not being compatible with any vanishing point. We take into
account only those pixels having a probability of being on an edge above a certain threshold.
Then, a normalized histogram ht(y) with four bins y = {1, 2, 3, 4} is computed from vanishing
point memberships of all pixels lying along the t-th superpixel boundary. The fourth bin
accumulates the aforementioned noise term. For an example, see Fig. 24.
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Figure 24: Example of the five-component gradient mixture model. Left: Original image,
Middle: Gradient mixture model: red, green, and blue denote gradient orientations compatible
with the vanishing points, cyan denotes noise, black off-edge gradients, Right: Line segments
compatible with vanishing points.

Finally, the consistency of the superpixel with each label is set as

gt(x) =

{∑3
i=1
i#=x

ht(i) if x = {1, 2, 3},

ht(x) if x = 4.
(4)

In the data term, two additional priors are utilized. One stemming from the position of
ideal lines and one from detected quadrilateral segments. The ideal line is defined as a line
passing through two vanishing points and is a projection of an intersection of a 3D plane with
a plane at infinity [HZ04]. It gives us the constraint that a superpixel detected in the image
cannot cross the ideal line of the plane it belongs to. The data terms of such superpixels
are set to zero to decrease the belief of them to lie on a particular plane. Fig. 21 shows two
ideal lines where one corresponds to a ground plane. Notice that this line, called a horizon, is
completely above the ground plane and therefore superpixels on that plane cannot cross the
horizon.

The second prior comes from the fact that all superpixels behind detected quadrilateral
segments, see Sec. 4.2.2, have to lie on the plane where the segments are detected. The data
terms of such superpixels are increased or set to a high value in order to strengthen the belief
of them to lie on that particular plane.

4.2.4 Results

We evaluate the proposed method on large variety of indoor images downloaded from the In-
ternet. Some of the most representative are shown in Fig. 25. The images are approximately
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1Mpixel large and their quality varies since they were taken by different, to us unknown, cam-
eras under different illumination conditions. The results show feasible and stable performance,
although light reflections, shadows, jpg-artifacts, and occlusions, are present in the images.

Fig. 25 shows each image segmented into 4 labels, three for each orthogonal plane and one
for “undecided”. We compare our method to the state-of-the-art method [HEH07] aiming
at exactly the same goal, i.e. at recovering surface layout from a single image. To produce
the results of [HEH07] the publicly available code5 was used in combination with a provided
indoor classifier. The presented results show comparable performance of our method, often
achieving better result. Moreover, the run-time of our method was shorter, 1min on average,
while the method of [HEH07] took 3min using the same Pentium 4@2.8 GHz.

The proposed method is currently mostly implemented in unoptimized MATLAB and many
of the routines and functions can be re-implemented in much more efficient way in C/C++.
Our experience and preliminary results indicate that the running time could be decreased to
∼5 to 10 s. For finding the MAP of the MRF we use a publicly available6 C++ implementation
of the Max-sum solver [Wer07].

It can be seen in Fig. 25 that at some places, especially at connections of planes, our result
is not always correct. This is caused by either superpixels missing the true boundary and thus
overlapping two planes. Or, there is an occlusion present, i.e., one plane partially occludes
the other. In the second case, the incorrect behavior comes from the data term formulation,
Eq. (4), as the superpixel is expected to contain two strong gradient directions only. In the
case of the occlusion, e.g. a table leg touching a floor, the superpixel covering a part of the floor
and touching the leg contains pixels at its boundary which are pointing to a vertical vanishing
point. This may cause that the superpixel is incorrectly assigned to one of the vertical planes.
The resulting inconsistency, depending on neighboring superpixels, cannot always be solved
by the smoothness term.

4.3 Scene planes from lines

One of the features of a scene useful for furniture recognition may be planes. In this section,
the detection and extraction of such scene planes is presented.

4.3.1 Stereo vision

The 3D vision problem is illustrated in figure 26. The physical point M is imaged in the
two retinal planes as m1 and m2. The distance between the two camera centers C1 and C2

is called the baseline. The intersection of the baseline with the two retinal planes defines the
two epipoles e1 and e2. The so called epipolar geometry – which is usually considered for
the search of corresponding points – is formed by the geometric relation of the image points
m1 and m2. As shown in 26, the 3D point M , the two image points m1 and m2, and the
two camera centers C1 and C2 are coplanar, i.e. they lie on the same plane, denoted as π.
This plane together with the baseline as axis forms a pencil of planes. The most interesting
property of this construction is that the ray in 3-space defined by by the camera center C1

and 3-space point M is imaged as the line l2 in the second view. As the 3-space point M must
lie on this ray, the image of M has to lie on l2 [HZ03].

In stereo vision, there are two main problems to be solved [Fau93]. The first one is called
the correspondence problem: For a point m1 in image one, decide which point m2 in image

5http://www.cs.cmu.edu/˜dhoiem/projects/software.html
6http://cmp.felk.cvut.cz/cmp/software/maxsum/

26



Figure 25: Results of planes-detection in single indoor images arranged in triplets. Top: Input
image with in-plotted ideal lines estimated by our method. Middle: The method by Hoiem
et.al. [HEH07] segmenting images into ground plane and vertical planes. Arrows stand for
plane orientations to the left/up/right, markers ’o’ and ’x’ for porous and solid materials,
respectively. Bottom: Our proposed method segmenting images into three orthogonal planes.
Each plane is depicted by a different color, where yellow color stands for “undecided” pixels.
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Figure 26: The 3D vision problem.

two corresponds to the point in image one, i.e. which point m2 images the same 3-space
point M as m1. The second one is the logical sequel to the corresponding problem, called the
reconstruction problem: For a given pair of corresponding image points m1 and m2, compute
the 3D coordinates of the 3-space point M . Theoretically, this problem can easily be solved
by intersecting the rays 〈m1, C1〉 and 〈m2, C2〉. However, in practise, the image points are
not perfectly known and therefore the rays may not intersect. Additionally, the result of the
reconstruction heavily depends on the accurate knowledge of the image planes and the camera
centers in the world coordinate frames, which is determined through calibration.

A stereo correspondence algorithm, which works with points or point-like features can
benefit from the constraint that the corresponding point m2 will lie on the associated epipolar
line and therefore the search space can be restricted to search along the line l2.

Using features for matching other than points like in our case lines, this strong constraint
does not hold.

4.3.2 Lines and line matching across two views

Line segments have some useful properties compared to points for tasks like scene reconstruc-
tion, especially when it has to be done fast, to be feasible for mobile robotics. Line segments
are much more discriminative than points and particularly for indoor scenes, they are the
features of choice for describing the planar scene parts. However, these useful properties don’t
come for free. Line matching across views is still a challenging problem. Difficulties include:

• The orientation of a line segment can be extracted very accurately but the endpoints
are not reliable [SSZ97]. Furthermore, the error induced by the endpoints varies with
the length of the line segment, which doesn’t make the overall process simpler.

• The topological connectivity of the line segments is often lost during line extraction
stage. Line segments in two views of a shared edge in 3-space are often broken in
different amount of segments in each view, inducing matching problems in later stages
if not corrected.

• At the matching stage: No strong disambiguating geometric constraint available in a
stereo setup. For lines with finite length, the epipolar constraint can be be applied to
the endpoints, resulting in a weak overlap constraint. As we will show later on, this
constraint does not hold for our environment. For infinite lines there is no geometric
constraint at all.
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• Line segments have little distinctive appearance and therefore the attributes for describ-
ing a line are weak: The length of a line can vary strongly as the extend of overlap. The
orientation is the most stable attribute, but almost almost useless without other addi-
tional features. Using the intensity neighborhood of the line with correlation techniques
for pointwise matching of line segments needs additional precautions [SSZ97]. Point to
point mapping has to be established with the epipolar geometry and the correlation
patches have to be corrected.

• Matching groups of line segments leads to more geometric and topological constraints
and can be solved by graph matching, but the disadvantage is the increased complexity
and therefore the increased computational costs.

Line segment correspondence In Figure 27, the extracted line segments are overlaid in
the images. The problem is clearly visible – there are several matching cases:

• (2) No correspondence: A line segment in one image has no corresponding line segment
in the second view.

• (1) Full correspondence: Two line segments correspond and they overlap or partially
overlap.

• (3) Multiple correspondence: Several line segments correspond and overlap the line
segment.

• (4) Virtual correspondence: This line segment corresponds to line segment marked with
(1), but there is no overlap of the segments.

Figure 27: Finding the correct correspondence is no trivial task.

Color In indoor environments, most parts of the scenes are poorly textured or even untex-
tured. One method of extracting discriminative features out of line segments was proposed
in [BBFVG05]. They extracted color profiles at each side of the line segment and used a
partitioned HSV color space for illumination invariant matching. In addition to the color pro-
files, they used a topological filter to increase the matching score. Inspired by their work, we

29



started building an line segment color profile matcher. As our goal is fast running algorithm,
we discarded the idea of matching color profiles as 166× 166 matrices with HSV color space,
as they are too computational expensive. Instead of that, we use cummulative histograms in
the L*a*b color space together with an angular constraint arising from small baseline stereo
for matching.

Epipolar geometry Trivially following from the nature of epipolar geometry, horizontal
stereo has problems with horizontal aligned features and vertical stereo with vertically aligned
features. As the robot will mostly drive aligned with the room layout (lots of lines are imaged
horizontal in the image), i.e. along floridors, along walls, we decided not to use a standard
stereo setup with epipolar lines aligned horizontal. We mounted the cameras aslant, so the
epipolar line crosses the image at an angle of about 45 degrees 28. This is a helpful construction
for the reduction of the possible line matches and it discards lots of possible mismatches. As in
man made environments, most of the structures are vertical or horizontal, the best compromise
was to mount the cameras aslant.

Figure 28: Extracted line segments (red) in two vies and the corresponding epipolar line for a
point on the chair in left image.

Repetitive structures One of the biggest problems in matching lines across views in a
stereo setup can be seen in Figure 28. The repetitive structure on the ground floor leads to a
large amount of mismatches. First of all, small changes in the viewing direction together with
the changed illumination conditions causes the straight line extraction stage to not extract the
same line segments in both images. Furthermore, the line segments are well aligned among
each other and have mainly the same color properties. As they look quite the same and are
aligned like the same, lots of mismatches cannot be detected and therefore not corrected.

Line reconstruction Triangulation of lines is easier to accomplish, as two arbitrary planes
generally intersect in 3-space. Lets take a closer look on the triangulation of lines. A line
segment in an image and the associated camera center induce a plane in three-space, see
Figure 29. As the corresponding line segment in the second view also induce a plane, the
intersection of these two planes is the line L in 3-space. Like straight lines always intersect
in projective 2-space, planes are their equivalent in 3-space. As intersection behind the two
cameras are meaningless, they can easily be detected as wrong line matches and can therefore
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easily be removed. For 3-space-lines, there is no method for distinguish between a correct
matching of line segments and a wrong matching.

Assuming that all line matches are correct, there is still a problem of triangulating lines:
Unlike point which have to fulfill the necessary property of being on the corresponding epipolar
line x1F ′x2 = 0, lines don’t have such a property and moreover they have no algorithm like
point features to enhance their accuracy. Two lines with their imprecisions are triangulated
as illustrated in 29 and their error is not just propagated, the error is increased. Furthermore,
the resulting 3-space-line has no length. Yes, you can take the outmost points projected by
the two line segments, but the resulting endpoint of this line have no meaning in the real
world. Therefore, the simple and straightforward idea of triangulating lines and than working
further in 3-space leads to no satisfying methods and results.

Figure 29: Triangulation of a corresponding line segment pair.

Findings on lines and stereo Lines are a rich source of information about our environment.
They are much more meaningful than points and point features and they are the right choice
especially in man made indoor environments. Compared to point or area based descriptors
like Surf, SIFT, MSER, etc. lines are much faster to extract. And here the advantages end
and problems begin to arise. Long lines are more discriminative than short lines, but they
are much harder to extract. Lines often break apart in the extraction phase and there is no
standard algorithm which works fast and robust to merge these small line segments. Line
descriptors are not that distinctive as needed. At the matching stage, mismatches are on the
order of the day and cannot be detected nor corrected. Triangulation of the line segments
leads to inaccurate lines in 3-space as two line segments place no supplemental constraint
in the triangulation process and therefore cannot be optimized for accuracy as points can.
Despite all problems, lines are the feature of choice and in the next section, a way out of the
problems is presented.

4.3.3 Trinocular stereo vision

With today’s decreasing costs of imaging hardware, money is no longer a factor against three
cameras. Commercial products like point grey’s digiclops7 are available and Matlab toolboxes

7http://www.ptgrey.com/products/digiclops
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for calibrating multi-camera systems are also freely available [SMP05]. Using three views is
far from being standard as it is stereo nowadays. But the arising geometric constraints on
lines from using three cameras are the ones we need for our task: Fast and reliable matching
of lines and accurate triangulation of these.

In a stereo setup, see Figure 29, the two planes in projective 3-space always intersect.
Having three cameras, the specific characteristic that three planes intersect in one single line
- Figure 30(a) places the needed constraint on the triangulation process. Line matches can be
evaluated and line triangulation can be optimized.

366 15 The Trifocal Tensor
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Fig. 15.1. A lineL in 3-space is imaged as the corresponding triplet l↔ l′ ↔ l′′ in three views indicated
by their centres,C,C′,C′′, and image planes. Conversely, corresponding lines back-projected from the
first, second and third images all intersect in a single 3D line in space.

provides a genuine constraint on sets of corresponding lines. We will now translate this
geometric constraint into an algebraic constraint on the three lines.
We denote a set of corresponding lines as li ↔ l′i ↔ l′′i . Let the camera matrices for

the three views be P = [I | 0], as usual, and P′ = [A | a4], P′′ = [B | b4], where A and
B are 3 × 3 matrices, and the vectors ai and bi are the i-th columns of the respective
camera matrices for i = 1, . . . , 4.

• a4 and b4 are the epipoles in views two and three respectively, arising from the first
camera. These epipoles will be denoted by e′ and e′′ throughout this chapter, with
e′ = P′C, e′′ = P′′C, where C is the first camera centre. (For the most part we will
not be concerned with the epipoles between the second and third views).

• A and B are the infinite homographies from the first to the second and third cameras
respectively.

As has been seen in chapter 9, any set of three cameras is equivalent to a set with
P = [I | 0] under projective transformations of space. In this chapter we will be con-
cerned with properties (such as image coordinates and 3D incidence relations) that are
invariant under 3D projective transforms, so we are free to choose the cameras in this
form.
Now, each image line back-projects to a plane, as shown in figure 15.1. From result

8.2(p197) these three planes are

π = PTl =

(
l
0

)

π′ = P′Tl′ =

(
ATl′

aT
4 l

′

)

π′′ = P′′Tl′′ =

(
BTl′′

bT
4 l

′′

)

.

Since the three image lines are derived from a single line in space, it follows that
these three planes are not independent but must meet in this common line in 3-space.
This intersection constraint can be expressed algebraically by the requirement that the
4 × 3 matrix M = [π,π′,π′′] has rank 2. This may be seen as follows. Points on the
line of intersection may be represented as X = αX1 + βX2, with X1 and X2 linearly
independent. Such points lie on all three planes and so πTX = π′TX = π′′TX = 0. It

(a) Trinocular stereo: The geometry of three cam-
eras observing the same 3-space line. [HZ03]
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Fig. 15.3. Line transfer. The action on lines of the homography defined by figure 15.2 may similarly be
visualized geometrically. A line, l, in the first image defines a plane in 3-space, which intersects π′ in
the line L. This line L is then imaged as the line l′′ in the third view.

Thus, H defined by the above formula represents the (point) homography H13 between
views one and three specified by the line l′ in view two.
The second and third views play similar roles, and the homography between the first

and second views defined by a line in the third can be derived in a similar manner.
These ideas are formalized in the following result.

Result 15.2. The homography from the first to the third image induced by a line l′ in
the second image (see figure 15.2) is given by x′′ = H13(l′)x, where

H13(l
′) = [TT

1 , TT
2 , TT

3 ]l′.

Similarly, a line l′′ in the third image defines a homography x′ = H12(l′′)x from the
first to the second views, given by

H12(l
′′) = [T1, T2, T3]l

′′.

Once this mapping is understood the algebraic properties of the tensor are straight-
forward and can easily be generated. In the following section we deduce a number of
incidence relations between points and lines based on (15.3) and result 15.2.

15.1.2 Point and line incidence relations
It is easy to deduce various linear relationships between lines and points in three im-
ages involving the trifocal tensor. We have seen one such relationship already, namely
(15.3). This relation holds only up to scale since it involves homogeneous quantities.
We may eliminate the scale factor by taking the vector cross product of both sides,
which must be zero. This leads to the formula

(l′T[T1, T2, T3]l
′′)[l]× = 0T, (15.4)

where we have used the matrix [l]× to denote the cross product (see (A4.5–p581)), or
more briefly (l′T[Ti]l′′)[l]× = 0T. Note the symmetry between l′ and l′′ – swapping the

(b) Line transfer from one view to another via a
plane in the third view. [HZ03]

Figure 30: Three view geometry.

The trifocal tensor and matching of lines The trifocal tensor - the 3-camera-equivalent
to the fundamental matrix in two views - provides a useful property for line matching, called
line transfer via the trifocal tensor. Suppose three corresponding lines in three views Fig. 30(b).
The geometric relationship of the setup inherent in the trifocal tensor allows one to transfer
the line l from image 1 via the plane π - induced by line l and the associated camera center
C - to image three. This property can be used successfully for verification of line matches.
This is the dulcet theory. In practise, this verification via the trifocal tensor depends heavily
on the accuracy of the trifocal tensor. Furthermore, there are configurations where wrongly
matched line segments cannot be detected, but this is a rare situation.

4.3.4 Scene planes

As we are searching for basic structural entities for describing the world, lines are appropriate
for further grouping to planes. As simple bottom up grouping leads to erroneous structural
basic features, a more elaborate method which utilizes the projective geometry is needed. The
method of choice is plane sweeping with homographies. Scene planes induced by line segments
can be seen in Figure 31; A line correspondence creates a pencil of planes in projective 3-space.
All possible homograpies having this line as axis, can be parameterized by a single projective
parameter µ. Figure 32 illustrates some steps in the homography sweeping process.

Plane hypothesis generation This method seems to be a good basis, as it was used several
times in the past. The homography can be calculated directly from one line and one point
correspondence and the epipoles[HZ03]. As we have no point features in our scenes - virtual
lineintersection could be used - and line segments often correspond to two planes, a sweeping
approach is justifyable.
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Figure 31: A line correspondence induces a pencil of planes.

Figure 32: Lines are transferred across the images via the homography. At each rotation step,
the line matches are calculated.

Figure 33 shows some of the extracted planes of the scene. As is is also clearly visible in
the illustration, there are some line correspondences to scene planes - Figure33 middle image
- which do not correspond to the real object. Therefore, these planes are nothing more than
hypotheses: We must verify them.

Plane hypothesis verification In addition to some small errors in plane hypotheses gener-
ation which could be corrected by additional robust fitting of the homographies using Ransac
or LMedS, there are some hypothese which are clearly incorrect, i.e. they represent no real
scene plane. This errors can be corrected by using all three views for verification and additional
techniques. For example, as scene planes are 2-dimensional, line segments corresponding to
the vanishing points of the plane can reduce the mismatches. Furthermore, warping image
patches and calculating simple difference - this is possible as the homographies eliminate the
projective interview-distortion - is possible. These additional techniques will make it feasible
to eliminate scenarios like Figure 34.

Conclusion on scene planes The trinocular setup with two color cameras and one
monochrome camera made it feasible to create a fast, stable and dependable process of ob-
taining basic structural entities or parts.

4.4 Dense stereo-based pre-segmentation of pieces of furniture

4.4.1 Ground Plane Estimation

Ground plane estimation uses the fair assumption that an estimated camera orientation to-
wards the ground plane is known from the robot set-up and the head and robot kinematics
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Figure 33: Scene planes in transparent red: left picture illustrates the scene plane of the wall,
middle picture a scene plane of a chair and right image shows a horizontal scene plane of the
chair. cH is the convex Hull of the four lines corresponding to the scene plane π

.

Figure 34: A scene plane hypotheses: due to inaccuracies in line extraction and trifocal tensor
estimation, some lines are wrongly classified as corresponding lines to a plane. This hypotheses
has to be rejected, as it clearly is no scene plane.

or from the previous tracking step [Bur02]. Even when going over floor discontinuities this
estimate is sufficient to render fast ground plane estimation efficient. Throughout the com-
plete approach this assumption is exploited but with very loose constraints to make sure that
all potential good data points even if very noisy are retained. Consequently large uncertainty
values will be used. Robustness is achieved by a sequence of filtering operations all using loose
constraints. The ground plane is then found with a probabilistic scheme to rapidly detect the
most likely plane in three steps.

First, three points are randomly sampled from the image data. These points are sampled
from the lower third of the image, because navigation and viewing angle indicate in this region
the highest likelihood to find ground plane data, however a pre-sampling as in [Bur02] has
not been found necessary. A second criteria is to estimate the height of each point using the
estimated camera orientation and the point disparity. The distance d to each point in the
scene can be estimated because a rough pose of the camera is known. Then the sample points
for the ground plane fit are only used if the estimated point height ĥ (see Fig. 35) lies within
30% of the expected height h, where

ĥ = d ∗ cos(θ) (5)
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is calculated from the viewing angle θ.

Figure 35: Estimating the height ĥ of a data point. The viewing angle is θ.

Second, the normal vector of the plane is calculated from these three points. If the normal
vector deviates not more than, e.g., 10 degrees from the expected ground plane, the surface is
retained as a potential hypothesis.

Steps 1 and 2 are iterated until 20 plane hypothesis are found. Each hypothesis is then
weighted by taking a random sample of 500 data points. This renders the process very efficient,
since taking all data points would be too time consuming. For each of the 500 points the
distance to the plane hypothesis is calculated and the median (originally the mean [Bur02])
is calculated. To the median-filtered points a plane is fit by calculating the Eigenvectors of
the covariance matrix. The cross product of the Eigenvectors corresponding to the two larger
eigenvalues gives the normal to the estimated plane. It is again checked if the plane lies within
the natural bounds of tracking and the predicted camera pose (i.e., a deviation of less than
10 degrees is used). We adopted the median as measure of quality since this enables to better
reject outliers.

After eliminating the data points of the ground plane and individual outliers a disparity
image such as in Fig. 36 is retained to segment the table.

Figure 36: Data points after ground plane and outlier elimination.
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4.4.2 Table Detection and Table Height Estimation

With the fit of the ground plane, only the remaining data points need to be considered to
locate tables (Fig. 37). A few spurious data points are eliminated using the obvious constraint
that tables are at least 10cm above the floor and not higher than 150cm. The task at hand is
to efficiently group pixels into horizontal planes. The task is different to locating the ground
plane, which can be assumed to extend over a larger area. Tables might be small and only
narrow regions, since the disparity image might contain only data of the table rim and little
or no data of a textureless table surface. Due to the restricted space the approach is described
as best as possible and exemplified with details about one example.

Figure 37: Flow diagram of the approach to locate tables in 3D.

A direct probabilistic search for tables, as it was done for the ground plane, is not feasible.
The reason is that tables are much smaller regions and random sampling would require too
many samples. Hence, the approach exploits the image-based neighbourhood of the original
2D image data to locate compact regions in 3D. To also find small tables the assumption is
that at least the table rim of several pixel width and length has been detected in the disparity
image. Because the table rim is a discontinuity, this is a not restrictive assumption, which the
subsequent experiments will confirm.

The data points after ground plane detection (see Fig. 36) are investigated. The points
are ranked depending on the pixel density in the immediate neighbourhood and either marked
as potential table cluster or disregarded. For each point retained this list, P1(x, y), two
neighbours P2 and P3 are found in the interval P2[x+±2−±5, y±4] and P3[x±4, y+±2−±5].
For any triplet P1, P2, P3, a plane is uniquely determined and if the normal vector does not
deviate more than a threshold, the experiments will all use 20 degrees, the triplet is a valid
table hypothesis. The result is a weighted list of table hypotheses.

In the next step the table hypotheses are tested against the remaining data points. Again
the method using the median is utilised (see Section 4.4.1). To locate a table the neighbour-
hood relationships of the 2D image are again exploited. While clustering data points in 3D is
cumbersome, connected component analysis of the 2D points corresponding to the data that
fits to a plane is highly efficient. It can use standard procedures [Gon02] and enables to detect
tables of the same height but at different locations. For an example see Fig. 38, which gives
a clear peak in the histogram of the table height. The height is specified in relation to the
estimated ground plane. If two tables are directly co-located, this situation would be treated
as one table, a fair assumption without further cognitive perceptual processing.

This clustering procedure is executed for all table hypothesis. The result is a list of tables
and the corresponding data points. To each cluster of points a plane is fit using the method
given above by calculating the Eigenvectors. Fig. 39 gives an example of a table detection.
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Figure 38: Histogram of table height estimation. The table was manually measured to be 72
cm high. The table height estimate gave a result of 72.4 cm.

The circumference of the table is difficult to estimate, since the objects on the table occlude
larger portions of the back of the tables. A method tested is to project all points clustered to
belong to the table into the table plane and to subscribe a rectangle whose sides are parallel
to the first two Eigenvectors and whose size is taken from the extension of the data points.
However, due to the occlusions this process is rather inaccurate, although for this example
it gave best results and the table size of 1100 × 680 was estimated as 1194 × 712 with the
axis slightly rotated to the right in Fig. 39. Overestimating the size is due to this rotation
of the main axis and due to the smoothing of the pixels when obtaining the disparity image.
While the results for this example is satisfactory, for the experiments below sometimes only
a triangular part is visible and in this case the estimation process cannot be used. It will be
further work to approach the table and to fuse several views to more accurately estimate the
table size.

4.4.3 Experiments

The goal of the Experiments is to demonstrate that table finding is robust under typical
variations encountered in an in-door home environment. There are no restrictions on the
relative orientation between robot and tables. Tables can be of normal height, small couch
tables or even the horizontal surface of chairs. The only assumption is that a table is at least
100 mm above the floor, because this is the uncertainty band used to detect the ground plane.

In the experiments we use a Pentium IV 1.8 GHz PC. Depending on the number of Points
in the disparity image and using VTK and other prototyping software tools, the calculation
requires less than three seconds. A C implementation is expected to be up to 100 as fast as
shown in ground floor tracking in [Bur02]. The stereo system was mounted at h = 1280mm
above the ground. For experiments 4 and 5 the camera was placed at h = 950mm above the
ground plane to test the sensitivity to the viewing angle. It turned out that detection is reliable
as long as the table surface can be partially seen. Detection of the chair in experiments 3 and
4 shows no difference in confidence of detection or height and size estimation. Only viewing
the table rim from the height of the table is not sufficient for reliable detection. Consequently,
only tables up to the height of the camera can be detected. The tilt angle θ of the camera
system is about 68 degrees for all experiments and it deviates slightly due to floor unevenness.
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Figure 39: Final result of table detection. The table area is clearly separated from data points
at the same height in the background. For accuracy of the results see Table 3.

The experiments are compared to ground truth data, which was manually obtained. Table
3 summarises the ground truth and the estimated values for the experiments. The example
presented in the previous Sections is given as Experiment 1. Four more experiments, #2-5,
have been conducted with different arrangements. Fig. 40 shows views from the left camera.
Fig. 41 shows the tables detected.

Table 3: Accuracy of table localization. Units are millimeters.

Exp. # Object Ground truth Estimation Deviation %

1 Table 720 724 4 0.56

2 Table 455 476 21 4.62

3 Chair 475 495 20 4.21

4 Chair 475 484 9 1.89

5 Chair 475 480 5 1.05

6 Table 455 467 12 2.64

The table shows that height estimation if accurate within 20mm or better than 5%, which
justifies the use of such loose thresholds as 20 degrees or 10cm used in the detection process.
The distance to the front rim of the table was also assessed, however, the process to obtain
ground truth is not reliable, since the camera internal coordinate system is not accessible.
These measurements have shown that table distance was about 1.5m and was estimated to
within 100mm.
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Figure 40: Left images of four further experimental set-ups referring to experiments #2-5 in
Table 3.

Figure 41: Disparity image for the images in Fig. 40 indicating the tables detected.

4.5 Structural entities from range data

As indicated in section 2.7, the intended features extracted from range data for furniture
recognition are horizontal and vertical planar regions. Principally, these features are also
appropriate to describe the floor plane, the ceiling as well as walls. The most important of
these three to determine the room layout are walls. In order to determine wall points in a
range image, Wulf et al propose in [OWW04] to choose the point of each scan column of the
range image with the largest distance to the sensor. As walls build the boundary of a closed
indoor scene, these points are most probably wall points. The resulting “2D scan” is only
disturbed by open doors, windows and objects that cover the wall completely.
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5 Conclusion

We have presented several methods to extract basic cues for structural decomposition, devel-
oped in the course of the first year of the robots@home project. Here the main focus was
on the detection of planar surfaces either from monocular or from stereo/trifocal images -
representing strong cues suitable for further processing such as recognition of certain types of
furniture (tables, cupboards), or doors, windows, or simply walls.

Preliminary experiments have shown promising results, however in many cases robustness
was an issue, stemming from the purely bottom-up processing nature of the methods described.
We plan to direct further research towards robust approaches and the fusion of the proposed
modalities and cues in order to obtain stable results in a computationally efficient way.

In the future, we will investigate statistical learning approaches to directly learn visually
meaningful, repetitive parts from large example sets without the need to identify and model
structural decompositions into parts - avoiding the typical pitfall of relying on to general a-
priori assumptions (or worse, heuristics) which do not hold in general settings. Assumptions
like ”a chair has four legs”, or ”a table has a flat surface in a certain height” are good examples
- they are either hard to verify (clutter on the table), or not true in the general sense (chairs
with less then, or without legs do indeed exist). Also, even if the structural model holds, the
object’s parts are not bound to exhibit a simple shape, and hence do not guarantee a low
intra-class variability. Furthermore, it is not clear how function-based, structural models (not
just their parameterisation) would be fully learned from data, as the verification or reasoning
about a parts structural function (a leg gives stable support to the table surface) would require
the agent to interact with the object. Simple geometric or topologic relations will not suffice
to tell if a certain part really provides stable support - a single, off-centre leg can support a
table, as long as it has a flat supporting socket and is properly screwed on.
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6 Appendix

Figure 42: Example images from the WORD database.
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Figure 43: Example images and ground-truth masks from the LabelMe database.
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Figure 44: Exampleset of the single image collection at IKEA.

43



Figure 45: Vanishing point detection results for Ikea images. Lines corresponding to three
orthogonal vanishing directions colour coded in red, green, and blue.
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Figure 46: Vanishing point detection results for Ikea images.
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Figure 47: Vanishing point detection results for Legrand images.
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Figure 48: Rectangle detection results. First row: Original image and complete rectangles
detected in the dominant orthogonal planes. Second to last row: Closed incomplete rectangles
(left column) and closed U-shapes (right column).
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Figure 49: Exampleset of the stereo sequences at our laboratory.
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Figure 50: Exampleset of the autonomous stereo sequence at IKEA.

49



Figure 51: Exampleset of one of the stereo sequences at IKEA.
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Figure 52: Examples of the trinocular stereo image collection.
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Figure 53: Examples of the chair image collection.52
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