
FPGA-BASED RECTIFICATION AND LENS UNDISTORTION FOR A
REAL-TIME EMBEDDED STEREO VISION SENSOR

Emanuel Staudinger, Martin Humenberger and Wilfried Kubinger

Austrian Research Centers GmbH - ARC
Donau-City-Str. 1, 1220 Vienna, Austria

phone: +43-50550-4139, fax: +43-50550-4250, email: emanuel.staudinger@arcs.ac.at
web: www.smart-systems.at

1. ABSTRACT

This paper presents the implementation of a Lens Distortion and Rectification Unit (LDRU). The unit is well suited
for lens undistortion and for stereo head rectification in embedded real-time systems. The proposed architecture
has been realized on a prototyping system based on an Altera STRATIX EP1S60 FPGA resulting in a performance
of 35 frames per second for a 1024× 1024 pixels input image.

2. INDRODUCTION

Modern applications such as robot assembling automation, upcoming mobile robot platforms for homes, and car
safety features require both, 3D perception and object classification, for navigation and object manipulation [9].
Real-time performance of approximately 30 frames per second is mandatory and a very critical design issue. Em-
bedded stereo vision sensors, consisting of a sensor head and a calculation unit, are very well suited for stereoscopic
perception but require huge computational effort. Due to mounting tolerances within the sensor head, resulting in
a maximum relative shift and revolution of these two camera images, rectification is absolutely necessary to reduce
the matching effort. In our employed method it is done by applying a remap with offline calculated coefficients.
The camera lenses also have an impact on the source image, resulting in a distortion in border areas which is
reversed by a second remap. By undistorting and rectifying the original camera images, the computational effort
for subsequent tasks like stereo matching is dramatically reduced, thus setting a very important step to achieve
real-time performance.

Approaches implementing lens undistortion and rectification on DSP based platforms or general purpose CPU
based platforms are very often insufficient [6]. Considering reduced power usage and small form factors, general
purpose CPUs (even with multimedia extensions) are outperformed by Digital Signal Processors (DSPs) and their
massive parallel architecture [4]. Also the DSP’s resource usage, including computation and memory transfers
for this correction process, is far too high and nearly leaves no evaluation time for high level applications. High
memory bandwidths, low memory latencies, and the overall resource consumption inhibit the usage of DSPs for
this application [2].

The presented solution to overcome this bottleneck is a dedicated hardware implementation, bypassing the
disadvantages of common platforms. Current Field Programmable Gate Array (FPGA) systems deliver enough
resources and performance, by reduced form factors to fulfill all necessary requirements [7],[10]. Their tightly
coupled memory architecture, and their possibility to flatten designs qualifies them for image processing [11].
Therefore, a generic IP-Core with a simple input/output image interface, a parameter cache interface for the
combined undistortion and rectification coefficients and minimized FPGA utilization is designed and tested on an
existing platform. By keeping this core generic, it offers a nearly seamless integration and reusability for future
projects, too.

This paper is organized as follows: Section 3 shortly briefs on the basics and necessities of rectification and
undistortion. Sections 4 and 5 present the proposed architecture, describe the target oriented implementation
and synthesis results. The conclusion is supplemented with techniques for eliminating the cache architecture by
on-the-fly calculation of the remap coefficients.

1

3. BASICS OF RECTIFICATION AND LENS-UNDISTORTION

In our approach, the preceding action before rectification and lens-undistortion requires a few steps: At first raw
images from the sensor head are grabbed by a conventional computer based software framework which controls the
cameras. The resulting specific parameters are combined in three camera matrices, shown in equ. 1, and are called
Camera Matrix, Distortion Coefficents, and Rectification Matrix. The first two matrices are used for undistortion
and the third one obviously for rectification [8].

CameraMatrix :

[
fx 0 cx

0 fy cy

0 0 1

]
DistortionCoefficentsMatrix : [d1 d2 d3 d4]

RectificationMatrix :

[
a1 a2 a3

a4 a5 a6

a7 a8 a9

] (1)

The combined offset parameters needed for our image remap method are calculated from these matrices. Eq. 2
shows the offset calculation using the first two matrices and eq. 3 the perspective warping for rectification. These
offsets for a certain coordinate pair (Xi|Yj) are simply added and represent the combined remap offset for the
(Xi|Yj) target image pixel.[

xn

yn

]
=

[
Xi−cx

fx
Yj−cy

fy

]
[
xd

yd

]
=
(
1 + d1r

2 + d2r
4
) [xn

yn

]
+
[
d3 (2xnyn) + d4

(
r2 + 2x2

n

)
d3

(
r2 + 2y2

n

)
+ d4 (2xnyn)

]
r =

√
x2

n + y2
n[

ud

vd

]
=
[
fxxd + cx

fyyd + cy

]

OffsetUndistortX = ud −Xi

OffsetUndistortY = vd − Yj

(2)

[
ur

vr

]
=

[
a1Xi+a2Yj+a3
a7Xi+a8Yj+a9
a4Xi+a5Yj+a6
a7Xi+a8Yj+a9

]

OffsetRectifyX = ur −Xi

OffsetRectifyY = vr − Yj

OffsetX = OffsetUndistortX + OffsetRectifyX

OffsetY = OffsetUndistortY + OffsetRectifyY

(3)

The process of grabbing various images and calculating the specific matrices is not further described in this paper
because this functionality is basically state of the art software and available through e.g. the Open Source Computer
Vision Library, OpenCV [3].

Fig. 1 shows the left and right raw images from a stereo head and also demonstrates the used verification pattern
for the camera specifc matrices determination. The afterwards added white bar gives a good view why rectifica-
tion is absolutely essential for subsequent stereo matching. In these presented images, the horizontal deviation is
approximately 23 pixels thus increasing the search space for stereo matching from one image line to more than 23
lines. A slight lens distortion can be seen at the right image boundary at the door, resulting in a bent door frame
and can be reduced in advance by deployment of higher quality lenses and a more accurate objective cavity within
the camera housing. The rectified and undistorted image for the stereo-head’s right camera is shown in fig. 2. The
remapping process rotated the image and the perspective plane and also reduces the valid image region. This image
also shows the sensor chip mounting tolerances between two actually identical cameras.

2

Figure 1: Raw stereo pair images with supplementary white bar for visualization.

Figure 2: Rectified and undistorted right camera image.

Implementing floating point based rectification and undistortion algorithms on a FPGA-based embedded system
poses the question of the required fixed point format which directly influences the FPGA’s resource utilization,
external memory usage, and memory transfer bandwidth. The integer component is defined by the max. allowable
deviation within an image and a range of e.g. −128 to +127 is more than sufficient for the offset values ([−64, +63] in
our implementation). The fractional part is determined by the required subpixel accuracy of subsequent processing
blocks and the sensor chip itself. An empirical value is approximately 10 per cent of the offset value. These
requirements lead to an easy to handle 8.8 fixed point format in our implementation, requiring 2 bytes for one
parameter and 4 bytes for a (Xi|Yj) parameter pair.

The basic computation flow for remapping, neglecting boundary checks, whether FPGA based or processor
based is as follows:
1. Create target coordinates (Xi|Yj) and look up the related offset parameter pair in a table.

2. Add the offset to the target coordinates to acquire the actual source image coordinates
(
X

′

i |Y
′

j

)
, take these four

adjacent pixel values instead of the values at (Xi|Yj) and interpolate.

1 2

3 4

(Xi’|Yj’)

X

Y

3. Increment target coordinates and loop back to step 1.

3

4. SYSTEM-ARCHITECTURE

A widely used FPGA-based architecture for image acquisition and image preprocessing of a stereo camera system
is shown in fig. 3. The cameras are connected to the FPGA using either Ethernet, Firewire, CameraLink or a
proprietary interface, and are triggered by e.g. the FPGA or externally. The camera trigger pulses should be
synchronized or even be the same to minimize the relative transfer delay between the two images thus reducing
the overall effort for buffering and image synchronization within the signal processing blocks. The images are
then processed by the rectification and undistortion units (hence called LDRU). Afterwards they are processed by
optional subsequent blocks like e.g. stereo matching and transferred through an output interface to a conventional
computer or, most commonly used, a DSP postprocessing system. The camera MACs are used to adapt different
camera interfaces to our internally defined image processing interface and offload all nonrelevant, camera specific,
controls and data protocols. The output MAC either directly takes streamed data from a signal processing block or
accesses the external memory to transfer the final images to a postprocessing system using miscellaneous interfaces
and protocols, like DSP memory interfaces, Rapid-IO for example [1]. The LDRUs load the required combined offset

Camera-
MAC

Trigger

LDRUleft

Output-
MAC

Image
Processing
Algorithms

Memory
Arbitration

Optional Units and Buses

Image Datapath

Memory Buses

DSP / PC ..

FPGA

Softcore

Camera-
MAC LDRUright

L

R

Stereo -
Sensorhead

Figure 3: Common high level architecture for FPGA-based image processing.

parameters from an external memory using a global memory arbitration unit which handles all external memory
accesses for all signal processing blocks. In most systems a softcore or FPGA-internal, hardwired processor core is
used to initialize the system and cameras, to ensure proper error handling and to generate the offset parameters.
The underlying hardware design, used in this paper for testing the LDRU, uses an Altera NIOS II/f softcore
operating at 100 MHz to calculate the parameters for both cameras during the boot phase and stores them in an
external DDR-RAM memory bank. The advantage of this system architecture is its simplicity to replace or add
signal processing blocks and to add external memory accesses as long as the overall memory transfer bandwidth is
not exceeded. The main disadvantage is the necessity of a relatively large external memory for storing the offset
parameters and the transfer bandwidth used by the LDRUs to load them. Assuming a 40 MHz pixel clock (without
any delay between lines and frames), a 1024× 1024 image and a 8.8 fixed point format for one parameter (X or Y
direction of one camera) we get an overall memory usage of

2 cameras · 2 Bytes · 2 · 1024 · 1024 = 8 MBytes (4)

4

and a peak memory transfer bandwidth of

2 cameras · 2 Bytes · 2 · 40 MHz = 320
MBytes

s
(5)

Considering additional concurrent memory accesses e.g. stereo matching and output transfer of a depth image,
the overall bandwidth reaches 400 MBytes

s and more which can currently easily achieved by banked DDR-RAM
memory. The image interface from and to the LDRUs is very simple and expandable, with strobes in the forward
path signaling the validation of data, lines, and frames and a busy signal in the backward path for stalling the data
transfer.

Fig. 4 shows the high level design of one LDRU with the design specific blocks and the external memory
interconnection. The interpolation unit gets four adjacent source pixels and calculates the final destination pixel

Camera-
MAC Even & Odd

lines splitter

Image RAM
- 64 Even lines
- 1024 Pixel per line
- Ring buffer

Control

Image RAM
- 64 Odd lines
- 1024 Pixel per line
- Ring buffer

Control

Address Generation
& Flow Control

x

y

Destination
Image

(Xi|Yj)

Interpolation LDRU
Output

8 bit

8 bit

Parameter Cache
- 512 Parameters

Control
Memory

Arbitration

2nd LDRU

0.
8

Fi
xe

d
P

oi
nt

O
ffs

et
 (x

|y
)

(X
i|Y

j)

R
ea

d
&

 W
rit

e
A

dd
r.

Optional Buses

Image Datapath

Memory Buses

Addresses & Internal Data

2x 8 bit

2x 8 bit

LDRU

(X
i’|Y

j’)

Figure 4: Lens Undistortion and Rectification Unit – Architecture for one camera.

value by linear interpolation using the fractional part out of the 8.8 fixed point X/Y offset. Inevitable multiplications
in this mathematical operation require a fully pipelined interpolation unit design to achieve a required 133 MHz
operating clock for the underlying hardware and leads to an insignificant latency of seven system clocks. The
parameter cache is a dual ported memory capable of storing parameters for 512 pixels and is divided in two banks to
256 parameter pairs each. This cache calculates the source coordinates

(
X

′

i , Y
′

j

)
out of the given target coordinates

(Xi, Yj) by adding the offsets and uses a simple caching scheme to update the paramters from the external memory.
Therefore one cache-bank is read only for coordinate computation and the other bank is concurrently filled with
new parameters. Storing and synchronizing the incoming pixels from the camera requires a certain amount of buffer
which is realized as cyclic buffer by the image RAMs. Due to the nature of this design and performance issues, an
image is splitted into even and odd lines to simplify the address generation and to reduce multiple memory accesses
for four adjacent pixels. This unit also includes an implicit control path to directly generate a second read strobe
for accessing the next higher pixel. The last design unit contains the address generation and flow control for the
LDRU and includes additional tasks like error handling of truncated images and strobe generation for the LDRU
output interface. To simplify the overall design and to minimze the impact on the FPGA’s resources, this unit is

5

implemented as a three cycle, partially pipelined finite state machine thus reducing the max. processible pixel clock
to a third of the system clock (133MHz

3 ≈ 44Mhz). The main task of this unit is to calculate the destination image
backward from the incoming source image and the sequence is as follows:
1. Wait until 64 lines are stored in image RAMs.
2. Create destination image coordinates and access parameter cache.
3. Read adjusted coordinates from parameter cache, validate image boundaries and access image RAMs to acquire

the correct pixels.
4. Create strobes for output interface and transfer source image pixels to interpolation unit.
5. Loop back to the first step.
As described earlier, the parameters are generated by a softcore during the startup phase and requires approximately
three minutes for computing all parameters if no further software optimization is used. This duration is acceptable
for laboratory tests but unthinkable for a sensor head mounted on a mobile robot with fast startup times. Excessive
numeric optimizations and the usage of floating point hardware accelerators lead to an overall computation time of
appr. 2.3 seconds for the boot process and could be further reduced by specialized hardware as proposed in section
6.

5. RESULTS

The underlying hardware design used in this paper for functional validation uses two CameraLink high dynamic
range cameras and an Altera mid-end FPGA. The resulting images from the LDRU are identical to images produced
in Matlab or on a PC C-code environment using quantized offset parameters. Margin values are not further
considered because subsequent signal processing blocks limit the image dimensions by defining their own regions of
interest. Poorly mounted sensor chips and lenses lead to limited active regions within a rectified and undistorted
image, too.

The synthesis result for one LDRU, fitted on an Altera STRATIX EP1S60B956 with speedgrade C6 is summa-
rized in table 1 and reaches a max. clock frequency of approximately 148 MHz. The Quartus Synthesis used the
balanced optimization and the Quartus Fitter was set to normal fitting effort with register packing. For the usage
in a stereo head, the summarized resource usage must be doubled.

Type Usage
Logic Elements 870
9-bit DSP blocks 6
MRAM-Blocks 2
M4K-Blocks 4
M512-Blocks 1

Table 1: Summarized synthesis results in Altera Quartus 7.2 SP1 after fitting.

6. CONCLUSION AND FUTURE WORK

The presented hardware architecture and final implementation for rectification and lens undistortion is very well
suited for an embedded real-time stereo vision sensor and leaves expansion space for further, more sophisticated
improvements. The current FPGA design delivers approximately 35 fps for a 1024×1024 image and satisfies current
requirements for a real-time stereo vision system.

Further work is based on accelerating the boot phase by decreasing the computation time for the parameter
generation. As mentioned in section 4, an unoptimized softcore implementation requires approximately 86 seconds
for one LDRU’s parameter generation. In this first approach, software emulated floating point arithmetics was used
which can be accelerated by adding hardware floating point units and leads to 21 seconds duration. Further im-
provements are based on numerical optimizations leading to a completely different algorithmical software approach:
Fig. 5 shows the 3D map of the offset parameters in X direction. This twisted plane can be approximated by various
techniques like Taylor approximation but the best one considering arithmetic effort and required accuracy, is a 5th
order polynomial approximation of the profile for each image line (the same approach is used for the Y-direction
too). Using a 750× 400 image we would get 400 5th order polynoms which need few program memory to store and
the coresponding C-code is reduced to approx. 20 lines of source code. This technique decreases the computation
time for one LDRU to 1.14 seconds and the possibility to create the offset parameters on the fly (with e.g. 40 MHz
pixel clock) in hardware is thoroughly given.

6

Figure 5: Combined offsets of one camera in X-direction.

But all these optimizations need a caching architecture and an external memory with an appropriate arbitration
unit. Eliminating the caching architecture would have the following benefits:
• No external memory for offset parameters used thus decreasing the necessary memory banks and chips, reducing

the printed circuit board space and power consumption.
• Functional reduction of the memory arbitration unit saving FPGA resources.
• Simplification of the LDRU’s interfaces: image interfaces and softcore accessible registers only.
• Startup time in the range of less than 1 ms.
• Less external program memory for the softcore and easier support of different sensor heads (cameras and base

lines).
The biggest challenge in transferring the parameter generation to a hardware implementation is the elimination

of the inevitable division at the perspective transformation matrix. Current developments however offer a simple
and hardware efficient solution using small lookup tables [5]. Further examinations lead to an overall expected
additional LDRU usage of approximately 1000 logic elements, 50 9-bit multipliers and 18 bits width for the division
algorithm leading to a 1.2 kbytes ROM-table. Techniques like time multiplexing of multipliers and transforming
multiplications with incremental operands into accumulators must be applied to fit the multiplier-intensive design
into mid-end FPGAs.

References

[1] K. Ambrosch, M. Humenberger, and W. Kubinger. A novel architecture for an embedded stereo vision sensor.
In Annals of DAAAM for 2007 & Proceedings of the 18th Internatinal DAAAM Symposium, 2007.

[2] J. Batlle, J. Marti, P. Ridao, and J. Amat. A new fpga/dsp-based parallel architecture for real-time image
processing. Real-Time Imaging, 8, 2002.

[3] G. Bradski, A. Kaehler, and V. Pisarevsky. Learning-based computer vision with intel’s open source computer
vision library. Intel Technology Journal, 9, 2005.

[4] C. Cuadrado, A. Zuloaga, M. Jose, J. Laizaro, and J. Jimenez. Real-time stereo vision processing system in a
fpga. In IEEE Industrial Electronics, IECON, 2006.

[5] P. Hung, H. Fahmy, O. Mencer, and M. Flynn. Fast division algorithm with a small lookup table. In Signals,
Systems, and Computers, 1999.

[6] S. Jorg, J. Langwald, and M. Nickl. Fpga based real-time visual servoing. In 17th International Conference
on Pattern Recognition, 2004.

7

[7] Y. Kukimoto and M. Fujita. Rectification method for lookup-table type fpga’s. In ICCAD ’92: 1992
IEEE/ACM international conference proceedings on Computer-aided design, pages 54–61. IEEE Computer
Society Press, 1992.

[8] J. Mallon and P. Whelan. Projective rectification from the fundamental matrix. Image and Vision Computing,
23, 2005.

[9] D. Murray and J. Little. Using real-time stereo vision for mobile robot navigation. Autonomous Robots,
8(2):161–171, 2000.

[10] F. Rinnerthaler, W. Kubinger, J. Langer, M. Humenberger, and S. Borbely. Boosting the performance of
embedded vision systems using a dsp/fpga co-processor system. Systems, Man and Cybernetics, 7, 2007.

[11] C. Vancea and S. Nedevschi. Lut-based image rectification module implemented in fpga. In Intelligent Computer
Communication and Processing, 2007.

8

	 Abstract
	 Indroduction
	 Basics of Rectification and Lens-Undistortion
	 System-Architecture
	 Results
	 Conclusion and future work

