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Abstract—In robotics, vertical lines have been always very and again they are sensitive to error in the segmentation
useful for autonomous robot localization and navigation in  process.
structured environments. This paper presents a robust method Besides these methods, other approaches to individual

for matching vertical lines in omnidirectional images. Matching i tchi ist which imilarit
robustness is achieved by creating a descriptor which is very Ineé maiching exist, which use some similarity measure

distinctive and is invariant to rotation and slight changes of illu- commonly used in template matching and image registration
mination. We characterize the performance of the descriptor on  (e.g. Sum of Squared Differences (SSD), simple or Normal-
a large image dataset by taking into account the sensitiveness to jzed Cross-Correlation (NCC), image histograms [4]). An
the different parameters of the descriptor. The robustness ofhe jtaresting approach was proposed in [5]. Besides using the
approach is also validated through a real navigation experiment . . . .
with a mobile robot equipped with an omnidirectional camera. topological 'mform"f‘t'on of the line, t_he aUthPrS al_so u§ed
the photometric neighborhood of the line for disambiguatio
Epipolar geometry was then used to provide a point to point
|. INTRODUCTION correspondence on putatively matched line segments over
A. Previous work two images and the similarity of the lines neighborhoods
was then assessed by cross-correlation at the corresgondin

Omnidirectional cameras are cameras that providéod oints

field (.)f.VIeW of the Scene. Such cameras are oft_en bm!t .b A novel approach, using the intensity profile along the
combining a perspective camera with a shaped mirror. F|X|r\%e segment, was proposed in [6]. Although the application
the camera with the mirror axis perpendicular to the floor ' )

has the effect that all world vertical lines are mapped tgf the method was to wide baseline point matching, the
PP authors used the intensity profile between two distinct §soin

e('?e. a line segment) to build a distinctive descriptor. The

with vertical lines because they are predominant in strectu descriptor is based on affine invariant Fourier coefficie

environments. are directly computed from the intensity profile. In the work

Th(_a use of vgrtlcal_l line track|.ng. IS not new 'n.t.hedescribed in [7], the authors define also a descriptor for ver
robotics community. Since the beginning of machine V|S|or‘h{cal lines which incorporates geometric, color, and istan

_roboticists have been using vertical lines or ot_her sorts Yvariants. This method and the one above however require
image measure for autonomous robot localization or pla%ﬁat the line’s ends are accurately detected. Conversety, o

recognition. method does not need this requirement.

Several works dealing with automatic line matching have ! : .
. All the methods cited above were defined for perspective
been proposed for standard perspective cameras and can he

g . . oo . Images. To match vertical lines in omnidirectional images,
divided into two categories: those that match individuagli g . : 9
) : however, only mutual and topological relations have been
segments; and those that match groups of line segments. ' . : _
- . . used (e.g. neighborhood or ordering constraints) somstime
Individual line segments are generally matched on their ge

. . . : along with some of the similarity measures cited above (e.g.
ometric attributes (e.g. orientation, length, extent oéntap) 9 y (eg

[8]-[10]. Some such as [11]-[13] use a nearest line strategSySD’ NCC) (see [1}-3]).

which is better suited to image tracking where the images. Contributions and Outline

and extracted segments are similar. Matching groups of Iir_1e This paper extends our previous work [21], summarized
segments has the advantage that more geometric 'nformatﬁ?lnSections Il 'and 1ll. In these sections, we describe how we

is available for disambiguation. A number of methods h"’“/Euilt our robust descriptor for vertical lines, which is yer

been developed around the idea of graph-matching [14 Jistinctive and is invariant to rotation and slight changés

[17]. The graph captures relationships such as “left of fllumination. The main contribution of this paper consists

right of", cycles, “collinear with” efc, as well as topola_@l characterizing the performance of the descriptor intreduc
connectedness. Although such methods can cope with mare

o . ) .In"our previous work. The performance evaluation is done on
significant camera motion, they often have a high complexnx large image dataset and takes into account the sensgivene

This work was supported by European grant FP6-IST-1-04535H0 Image noise, to image saturation, and to all the paraseter
Robots@Hom® used to define the descriptor. Furthermore, we also evaluate



of each area is equal {®R,,,... — Rmin)/6 (S€e Fig. 2). Then,
we compute the image gradients (magnitddeand phase
®) within each of these areas and we smooth its magniture
with a Gaussian window witlrg = /3.

Concerning rotation invariance, this is achieved by
redefining the gradient phaske of all points relatively to
the radial line’s angl® (see Fig. 2).

Fig. 1. Extraction of the mosFig. 2. Extraction of the circular B. Orientation Histograms
reliable vertical features. areas. ’ _ )
To make the descriptor robust to false matches, we split

each circular area into two parts (the left and right across

the robustness of the approach by tracking vertical lines ihe line) and consider each one individually. For each side
a real navigation experiment using a mobile robot equippesk each circular area, we compute the gradient orientation
with an omnidirectional camera. histogram. Namely, the whole orientation space (fronto

The present document is organized as follows. First, wg) is divided into N, equally spaced bins and each bin is
describe our procedure to extract vertical lines (Sectiogssigned the sum of the gradient magnitudes which belong
I) and build the descriptor (Section Ill). In Section IV, to the correspondent orientation interval. In the end weehav
we provide our matching rules, while the analysis of thehree pairs of orientation histograms:

performance and the results of tracking are respectivel
presented in Sections V and VI. - [Hir, Hig], Ha = [Hop, Hogr], Hs = [Hsr, Hsg]
@

Il. VERTICAL LINE EXTRACTION where subscripts L, R identify respectively the left andtig

Our platform consists of a wheeled robot equipped witlection of each circular area.
an omnidirectional camera looking upwards. In our arrange- . .
ment, we set the camera-mirror system perpendicular to tie Building the Feature Descriptor
floor where the robot moves. This setting guarantees that allFrom the computed orientation histograms, we build the
vertical lines are approximately mapped to radial lineshen t final feature descriptor by stacking all three histogranrai
camera image plane (Fig. 1) In this section, we detail ous follows:
procedure to extract prominent vertical lines. Our procedu H = [Hy, Hz, H3] 2

consists of the following steps. To have slight illumination invariance, we pre-normalizeke

First, we apply a Sobel edge detector and compute t (?stogram vectoH; to have unit length. This choice relies on

binary edge image. Then, we use a circle detector to compuyie ) . : . . .
the position of the image center (i.e. the point where a e hypothesis that the image intensity changes linearly wi

. . . : . lllumination. However, non-linear illumination changeanc
radial lines intersect in). This can be easily done becausc—F

. NP . also occur due to camera saturation or due to illumination
the external border of the mirror is visible in the image. : . . :
. : changes that affect 3D surfaces with different orientation
To detect the vertical lines, we use a Hough transform. = . )
. different amounts (see Fig. 10). These effects can cause
Observe that in our case the Hough space has only on . : . .
. . . ) a large change in relative magnitude for some gradients, but
dimension §). Every cell in the Hough space contains the . . : .
. . . are less likely to affect the gradient orientations. Themef
number of pixels that vote for the same orientation. We . . .
We reduce the influence of large gradient magnitudes by

set_ the .d|menS|on of the Hough space equal to 720 Ce”t?iresholding the values in each unit histogram vector sb tha
which give an angular resolution of 0.5Then, we apply

non-maxima suppression to identify all local peaks each bin is no larger than 0.1, and then renormalizing to unit
PP P ' length. This means that matching the magnitudes for large

I1l. BUILDING THE DESCRIPTOR gradients is no longer as important, and that the distdbuti
In Section IV, we will describe our method for matching®f orientations has greater emphasis. The value 0.1 was

vertical lines between consecutive frames while the robot fetermined experimentally and will be justified in Section
moving. To make the feature correspondence robust to fal¥e Although this is not true in nature, this approximation
positives, each vertical line is given a descriptor which j@roved to work properly and will be shown in Sections V
very distinctive and is invariant to rotation and slight obas and V. ) . )
of illumination. In this way, finding the correspondent of a 10 "éSume, our descriptor is avi-element vector contain-
vertical line can be done by looking for the line with the"d the gradient orientation histograms of the circulamaare

closest descriptor. In the next subsections, we descrise hg OUr Setup, we extract 3 circular areas from each vertical
we built our descriptor. feature and use 32 bins for each histogram; thus the length

of the descriptor is

N = 3areas - 2parts - 32bins = 192 3)

A. Rotation Invariance

Given a radial line, we divide the space around it into three
equal non-overlapping circular areas such that the ragjus Observe that all the feature descriptors have the samenlengt



TABLE |

IV. FEATURE MATCHING
THE PARAMETERS USED BY OUR ALGORITHM WITH THEIR EMPIRICAL

As every vertical feature has its own descriptor, its corre- VALUES
spondent in consecutive images can be searched among the
features with the closest descriptor. To this end, we need F; =105 F,=075 F3=08

to define a dissimilarity measure (i.e. distance) between tw
descriptors.

In the literature, several measures have been proposBd Second test
for the dissimilarity between two histogranld = {h;}
and K = {k;}. These measures can be divided into tw
categories. Théin-by-bin dissimilarity measures only com-
pare contents of corresponding histogram bins, that ig, th
compareh; and k; for all ¢, but noth; andk; for ¢ # j.
The cross-bin measures also contain terms that compare

non-corresponding bins. Among th@n-by-bin dissimilar-  \yhere< D, > is the mean value ab; andF, clearly ranges

ity measures, fall the Minkoski-form distance, the Jeffreyom 0 to 1. This criterion comes out of experimental results
divergence, the¢? statistics, and the Bhattacharya distance.

Among thecross-bin measures, one of the most used is th% .

) . . . . Third test

Quadratic-form distance. An exhaustive review of all these

methods can be found in [18]-[20]. Finally, the third test checks that the distance from the
In our work, we tried the dissimilarity measures mentione@losest descriptor is smaller than the distance from therskc

above but the best results were obtained using.thdistance closest descriptor:

(i.e. Euclidean distance) that is a particular case of the . _

Minkoski-form distance. Therefore, in our experiments we minD; = F3 - SecondSmallest Distance, (8)

used the Euclidean distance as a measure of the dissimilarit . )
between descriptors, which is defined as: where F5 clearly ranges from 0 to 1. As in the previous test,

the third test raises from the observation that, if the atrre
correspondence exists, then there must be a big gap between
(4) the closest and the second closest descriptor.
FactorsFy, F», F3 were determined experimentally. The
values used in our experiments are shown in Table I. The

By definition of distance, the correspondent of a featurec,hOICe of these values will be motivated in Section V.

in the observed image, is expected to be the one, in the
consecutive image, with the minimum distance. However,

if a feature is no longer present in the next image, there |, this section, we characterize the performance of our
will be a closest feature anyway. For this reason, we def'n%scriptor on a large image dataset by taking into account

three tests to decide whether a feature correspondent exigla sensitiveness to different parameters, which are image
and which one the correspondent is. Before describing thesg; ;ration image noise, number of histogram bins, and

tests, let us introduce some definitions. number of circular areas. Furthermore, we also motivate the

Let{A1,Az,..., AN, } @nd{By1,Bz,...,Bng } bR WO (poice of the values ofy, Fy, and s shown in Table I.
sets of feature descriptors extracted at time and ¢p

respectively, wheréV,, Np are the number of features in
the first and second image. Then, let

o The second test checks that the distance from the closest
descriptor is smaller enough than the mean of the distances
érom all other descriptors, that is:

minD; = Fy- < D; > (7)

V. PERFORMANCEEVALUATION

1) Ground truth: To generate the ground truth for testing
our descriptor, we used a database of 850 omnidirectional
D; = {d(A;,B;),j=1,2,...,Np)} (5) pictures that is a subset of the whole video sequence used
in Section VI. First, we extracted verticals lines from each
be the set of all distances between a givepand allB;  jmage. Then we manually labeled all the corresponding

(=12, Np). _ . features with the same ID. The images were taken from
Finally, let minD; = min; (D;) be the minimum of the the hallway of our department. Figure 10 shows four
distances between giveA; and all B;. sample images from our dataset. The images show that the

' illumination conditions vary strongly. Due to big windows,
A. First test . A e
) ) a mixture of natural and artificial lighting produces difficu
The first test checks that the distance from the closefghting conditions like highlights and specularities. tii
. _ displacement between two views of the same vertical line
minD; = Fy. (6) ) X
was about 5 meters, while the average displacement was

By this criterion, we actually set a bound on the maximunaround 2 meters.
acceptable distance to the closest descriptor.
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Fig. 4. Influence of noise leve¥{) on correct matches. The correct matches
are found using only the nearest descriptor in the database. Fig. 6. The probability density function that a match is corraccording
to the first rule.

2) Image saturation: As we mentioned in Section 1lI-C,
we threshold the values of the histogram vectors to redud¥ns in order to reduce the dimension of the descriptor.
the influence of image saturation. The percentage of corréepnversely, since in this graph the percentage of correct
matches for different threshold values is shown in Figmatches is found by using only the nearest closest descripto
3. The results show the percentage of verticals that finie observed that the best matching results, when using the
a correct match to the single closest neighbor amorigree rules of Section IV, are obtained with 32 orientations
the whole database. As the graph shows, the maximuffius, in our implementation we used 3 areas and 32
percentage of correct matches is reached when usinghigtogram bins. Finally observe that we considered powers
threshold value equal to 0.1. In the remainder of this pape®f 2 due to computational efficiency.
we will always use this value.

5) Matching rules. Figure 6 shows the Probability Den-

3) Image noise: The percentage of correct matchessity Function (PDF) for correct and incorrect matches in
for different amounts of gaussian image noise (frofd terms of the distance to the closest neighbor of each keypoin
to 10%) is shown in Fig. 4. Again, the results show theln our implementation of the first rule, we choBg = 1.05.
percentage of correct matches found using the singhs observed inthe graph, by this choice we reject all matches
nearest neighbor in the all database. As this graph shows, which the distance to the closest neighbor is greater
the descriptor is resistant even to large amount of pixedeoi than1.05, which eliminates50% of the false matches while

discarding less thaf% of correct matches.

4) Histogram bins and circular areas. There are two Similarly, Fig. 7 shows the PDFs in the terms of the ratio
parameters that can be used to vary the complexity of closest to average-closest neighbor of each keypoint. In
our descriptor: the number of orientation bing,J in the our implementation of the second rule, we chése= 0.75.
histograms and the number of circular areas. Although iAs observed in the graph, by this choice we reject all matches
the explanation of the descriptor we used 3 non overlappinghere the ratio between the closest neighbor distance and
circular areas, we evaluated the effect of using 5 overtappi the mean of all other distances is greater th&rs, which
areas with50% overlap between two circles. The resultseliminates45% of the false matches while discarding less
are shown in Fig. 5. As the graph shows, there is a sligithan8% of correct matches.
improvement in using 5 overlapping areas (the amelioration Finally, Fig. 8 shows the PDFs in terms of the ratio of
is only 1%). Also, the performance is quite similar usingclosest to second-closest neighbor of each keypoint. In our
8, 16, or 32 orientation bins. Following this considerasion implementation of the third rule, we chodg = 0.8; in
the best choice would seem to use 3 areas and 8 histogr#ims way we reject all matches in which the distance ratio is
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homogeneous. The lines are used to connect features that
belong to the same track. When a new feature is detected,
this feature is given a label with progressive numbering and
a new line (i.e. track) starts from it. In this graph, there ar
three false matches that occur at the points where two tracks
intersect (e.g. at the intersection between tracks no. 1 and
58, between track no. 84 and 86, and between track no. 65
and 69). Observe that the three huge jumps in the graph are
not false matches; they are only due to the angle transition
from —7 to .

Observe that our method was able to match features even
when their correspondents were not found in the previous
frames. This can be seen by observing that sometimes circles
are missing on the tracks (look for instance at track no.

Fig. 7. The probability density function that a match is cotraccording
to the second rule.

0s - 52). When a correspondence is not found in the previous
mm frame, we start looking into all previous frames (actualty u
o4 /o to twenty frames back) and stop when the correspondence is

| o [ found.

Al When examining the graph, it can be seen that some tracks
are suddenly given different numbers. For instance, olkserv
that feature no. 1 - that is the fist detected feature andsstart
at frame no. 0 - is correctly tracked until frame no. 120
and is then labeled as feature no. 75. This is because at this
frame no correspondence was found and then the feature
was labeled as a new entry (but in fact is a false new entry).
Another example is feature no. 15 that is then labeled as
no. 18 and no. 26. By a careful visual inspection, only a
few other examples of false new entries could be found.
Indeed, tracks that at a first glance seem to be given differen
greater thard.8, which eliminates)2% of the false matches numbers, belong in fact to other features that are very close
while discarding less thah0% of correct matches. to the observed one.

After visually inspecting every single frame of the whole
video sequence (composed of 1852 frames), we found 37

In our experiments, we adopted a mobile robot with #alse matches and 98 false new entries. Comparing these
differential drive system endowed of encoder sensors on thkerors to the 7408 corresponding pairs detected by the
wheels. Furthermore, we equipped the robot with an omnélgorithm over the whole video sequence, we Ha8%
directional camera consisting of a KAIDAN 360 One VRof mismatches. Furthermore, we found that false matches
hyperbolic mirror and a SONY CCD camera the resolutiomccurred every time the camera was facing objects with
of 640 x 480 pixels. In this section, we show the performanceepetitive texture. Thus, ambiguity was caused by the pres-
of our feature extraction and matching method by capturingnce of vertical elements which repeat almost identical in
pictures from our robot in a real indoor environment. the same image. On the other hand, a few false new entries

The robot was moving at aboQt15 m/s and was acquir- occurred when the displacement of the robot between two
ing frames at3 Hz, meaning that during straight paths thesuccessive images was too large. However, observe that when
traveled distance between two consecutive framesbwas.  a feature matches with no other feature in previous frantes, i
The robot was moved in the hallway of our institute ands better to believe this feature to be new rather than commit
1852 frames were extracted during the whole path. Figure false matching.
10 shows four sample images from the dataset.

The result of feature tracking is shown only for the first
150 frames in Fig. 9. The graph shown in Fig. 9 was In this paper, we presented a robust method for matching
obtained using only the three matching rules described wertical lines among omnidirectional images.The basi@aide
Sections IV-A, IV-B, IV-C. No other constraint, like mutual to achieve robust feature matching consists in creating a
relations, has been used. This plot refers to a short path @éscriptor which is very distinctive and is invariant toatidn
the whole trajectory while the robot was moving straightand slight changes of illumination. We characterized the
(between frame no. 0 and 46), then doind&)° rotation performance of the descriptor on a large image dataset
(between frame no. 46 and 106), and moving straight agaiby taking into account the sensitiveness to the different
As observed, most of the features are correctly trackgmhrameters of the descriptor. The robustness of the agproac
over the time. Indeed, most of the lines appear smooth amehs also validated through a real navigation experimert wit

0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
Ratio of distances (closest/second closest)

Fig. 8. The probability density function that a match is cotraccording
to the third rule.

VI. EXPERIMENTAL RESULTS

VIl. CONCLUSION
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Fig. 9. Feature tracking during the motion of the robotyhaxis is the angle of sight of each feature and in thaxis the frame number. Each circle
represents a feature detected in the observed frame. Lipessent tracked features. Numbers appear only when a newddatdetected.
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