
� 

Automatic Detection of Checkerboards on Blurred and Distorted Images


Martin Rufli, Davide Scaramuzza, and Roland Siegwart 
Autonomous System Lab, ETH Zurich, Switzerland 

ruflim@ethz.ch, davide.scaramuzza@ieee.org, r.siegwart@ieee.org 

Abstract— Most of the existing camera calibration toolboxes 
require the observation of a checkerboard shown by the user 
at different positions and orientations. This paper presents 
an algorithm for the automatic detection of checkerboards, 
described by the position and the arrangement of their corners, 
in blurred and heavily distorted images. The method can be 
applied to both perspective and omnidirectional cameras. An 
existing corner detection method is evaluated and its strengths 
and shortcomings in detecting corners on blurred and distorted 
test image sets are analyzed. Starting from the results of 
this analysis, several improvements are proposed, implemented, 
and tested. We show that the proposed algorithm is able to 
consistently identify 80% of the corners on omnidirectional 
images of as low as VGA resolution and approaches 100% 
correct corner extraction at higher resolutions, outperforming 
the existing implementation significantly. The performance of 
the proposed method is demonstrated on several test image sets 
of various resolution, distortion, and blur, which are exemplary 
for different kinds of camera­mirror setups in use. 

I. INTRODUCTION 
Cameras can appear either with limited field of view 

(i.e. perspective cameras) or with wide field of view. Wide 
field of view cameras can be built by using fisheye lenses 
(e.g. Nikon or Sigma) [1] or by combining a standard 
perspective camera with a shaped mirror (i.e. catadioptric 
omnidirectional cameras, Fig. 1) [2]. 

Accurate camera calibration is necessary for any computer 
vision task requiring extracting metric information of the 
environment from 2D images, like in ego­motion estimation 
and structure from motion. All works on camera calibration 
can be classified into two different categories. The first one 
includes methods which exploit prior knowledge about the 
scene, such as the presence of calibration patterns (e.g. 
see [3], [4], [5], [6], [7]) or lines ([8] or [5], [9] for an 
overview). The second group covers techniques that do not 
use this knowledge; this includes calibration methods from 
pure rotation or planar motion of the camera [10], and 
self­calibration procedures, which are performed from point 
correspondences and epipolar constraint through minimizing 
an objective function [11], [12], [13]. 

In the last decade, several toolboxes have been imple­
mented, which allow any user to easily calibrate a camera 
(perspective, fisheye, or omnidirectional) by using a planar 
checkerboard as a calibration pattern (for perspective cam­
eras see as an example [14], for fisheye and omnidirectional 
cameras see [15], [16]). These toolboxes require the user 
to take several pictures of the pattern shown at a few 

This work was supported by European grant FP6­IST­1­045350 
Robots@Home R

Fig. 1. Left: hyperbolic mirror placed on a video camera. Top right: Philips 
SPC 300. Bottom right: Philips ToUCam Fun. 

different positions and orientations. Then, the user is asked 
to identify the corner points of the checkerboard, which are 
used as the only input to the calibration routine. The tooboxes 
given in [14] and [16] require the user to identify the four 
external corners of the checkerboard in every test image by 
manually clicking on them. The approximate locations of 
the remaining corners are then simply interpolated and a 
Harris corner finder is employed in the vicinity to refine 
their position. The toolbox given in [15], which is designed 
for fisheye and catadioptric central omnidirectional cameras, 
conversely requires the user to click on all corners of the 
checkerboard. Indeed, this toolbox makes no assumption 
about the shape of the lens or the mirror, thus the positions 
of the remaining corners cannot be interpolated from four 
points. The positions of the clicked points are also refined by 
a Harris corner finder. In the light of the above elaboration, 
it was decided to design an automatic checkerboard extractor 
which could be easily implemented into any and all of the 
above mentioned toolboxes. Such an add­on dramatically de­
creases calibration time and increases user experience, while 
at the same time preserving high calibration accuracy and 
the correspondence between the same corners over all test 
images. In order to be useful, such an extraction algorithm 
needs to work with images of low resolution cameras (at 
least down to VGA, still widely in use), high distortion (as 
introduced by omnidirectional cameras) and blur, stemming 
from the fact that for catadioptric cameras usually not the 
whole mirror can be made to lie in focus. For this purpose, 
the checkerboard extraction algorithm by Vezhnevets [17], 
although developed for planar cameras, was found to yield 
a good starting point. 



A. Contribution and Outline 

The main contribution of this paper is a novel heuristic to 
detect checkerboards in blurred and highly distorted images. 
In particular, we show that through this heuristic the detec­
tion rate of a standard checkerboard detection algorithm[17] 
increases from 20% up to 80%, reaching almost 100% 
using high quality cameras. Furthermore, the code is freely 
available online, both in its source form and incorporated 
into our camera calibration toolbox. To our knowledge this 
is the only such implementation readily available [15]. 

This document is organized as follows. In Section II, the 
important steps of an existing corner extraction algorithm 
[17] are described and its strengths and shortcomings con­
cerning the given task are elaborated. In Section III we 
propose and discuss several steps for increasing the code’s 
performance. Section IV compares the performance of the 
improved algorithm against both the performance of the 
existing implementation and manual selection of corners. 

II. THE ALGORITHM BY VEZHNEVETS 

OpenCV [18] is an open source computer vision library 
initially developed by Intel. It features algorithms for many 
vision applications and is in particular equipped with a 
checkerboard corner extraction functionality developed by 
Vladimir Vezhnevets [17]. The function identifies single 
black checkers of a checkerboard and then tries to merge 
them back into the original pattern. As a region based method 
it has the advantage of being much more robust to noise and 
blur than a line based method would be. What follows is a 
step­by­step analysis of the important parts of this algorithm. 
In Section III, we will adapt it to our needs. 

A. The Steps of the Algorithm 

1) Algorithm Input: Input to the algorithm is an image 
containing a black­and­white checkerboard of a given size. If 
a color image is provided, a greyscale conversion is executed 
thereafter. Then, the algorithm continues with a thresholding 
step. 

2) Adaptive Threshold: Binary thresholding is well suited 
to separate black from white checkers under most circum­
stances. The algorithm supports adaptive thresholding, which 
binarizes the image locally according to a given mask size 
and method and generally delivers higher level segmentation 
results for non­uniformly lit images. Two kernel implemen­
tations are available: “mean” and “Gaussian”. In the original 
approach “mean” is used, which requires considerably less 
computational power and is thus well suited for the checker­
board detection from a video stream, where execution time 
is critical. The checkers in the thresholded black­and­white 
image tend to be grown together due to blur, noise and/or 
too coarse sampling. For correct identification, they need to 
be separated. An erosion step is applied. 

3) Erosion: The inclusion of an erosion step (by using a 
3x3 “rect” kernel, see Fig. 5 right) is the main ingenious idea 
behind Vezhnevets’ implementation. In this way it is possible 
to separate the checkerboard at the corners and obtain a set 
of black quadrangles (four­sided polygons). The contours 

Fig. 2. Left: After adaptive thresholding and one erosion step (run one). 
Right: After adaptive thresholding and two erosion steps (run two). 

Fig. 3. Left: All found quadrangles after run one. Right: All found 
quadrangles after run two. 

of these quadrangles are then easily found with a binary 
contour finder. If no pattern is found during the next steps, 
it can be assumed that the checkers are still grown together. 
Therefore erosion is gradually increased and the following 
steps repeated. Fig. 2 illustrates how the checkers shrink and 
then separate from their neighbors. 

4) Quadrangle Generation: A binary contour finder then 
tries to find closed contours and upon success, tries to fit 
a quadrangle onto it by gradually approximating a polygon. 
Notice how after the first erosion run (Fig. 3 left) only two 
checkers are properly separated and hence only two quads are 
found. After two erosion steps (Fig. 3 right) the majority of 
quadrangles, but not all of them, are found. By applying even 
more erosion steps, the pattern starts to partially dissolve, 
resulting in non­detection of some (small) checkers. 

5) Quadrangle Linking: Quadrangles are then linked ac­
cording to the following heuristic: 

For every corner of every found quadrangle compute the • 

distance to every corner of every other quadrangle. Store 
the smallest such distance and the respective corner and 
quadrangle ID. 
Check whether this distance is smaller than the smallest • 

edge length of both quadrangles. This is intended to

make sure, that no quadrangle gets linked to quadran­

gles too far away.

If these tests are passed, then the two corners are linked
• 

and the extracted corner position is set to the arithmetic 
mean of their former positions. 

The extracted corners finally form a pattern described 
through their position and neighborhood relation with respect 
to the other corners. 

6) Further Steps: From all erosion runs, the algorithm 
then selects the corner pattern with the highest number of 
found corners. No information exchange between different 



Fig. 4. All found corners after run two. 

erosion runs is performed. It is thus assumed that in a single 
given run every checker is theoretically identifiable. In case 
the largest pattern features too many corners (i.e. due to an 
erroneously identified checker because of glare), the ones 
which result in the smallest convex hull are selected . 

B. Limitations 

The OpenCV corner finding algorithm was designed for 
real­time calibration of regular cameras. Focus was laid on 
fast execution times, hence the use of a “mean” instead 
of a “Gaussian” mask during the adaptive threshold step. 
Furthermore, the algorithm only returns a pattern if the 
complete checkerboard was successfully detected, ignoring 
the fact that for calibration purposes it is often enough 
to correctly identify a significant portion of the corners. 
As will be shown in section IV, the algorithm ceases to 
function properly with any combination of low resolution 
(VGA), blurred, and distorted images. Therefore it is of 
limited use for omnidirectional camera calibration, and thus 
for implementation into such toolboxes. 

III. IMPROVEMENTS TO THE CODE 

A. Adaptation of Erosion Kernels 

For features of large size in comparison to the kernel used, 
erosion appears to affect all border pixels uniformly. Upon 
closer inspection, however, corners tend to get rounded, the 
exact amount depending on the orientation of the checker 
and the type of kernel used. This starts to have a signifi­
cant effect on the checkers if they become of comparable 
size as the kernels themselves; a condition which is often 
fulfilled for omni­images taken with VGA resolution. Even 
though the smallest possible symmetric erosion kernel (a 3x3 
maximum filter) was used in the original implementation, 
some improvements can nonetheless be achieved: the kernel 
size cannot be made smaller than 3x3, but its shape may be 
altered. For a symmetric 3x3 kernel it is possible to construct 
two shapes, namely “cross” and “rect” as depicted in Fig. 
5. Alternating between the two has the effect of preserving 
the aspect ratio of (small) checkers independent of their 
orientation, i.e. it allows for uniform “shrinking”. 

Fig. 5. Left: 3x3 “Cross” kernel. Right: 3x3 “Rect” kernel. 

Fig. 6. New heuristic for corner linking: If the two candidate corners 
(red dots) lie on the same side of each of the four straights (i.e. inside the 
semitransparent yellow area), they are successfully matched. 

B. New Heuristic for Quadrangle Linking 

In the original implementation, correctly identified black 
checkers are connected over their corners according to 
the heuristic as described in Section II­A.5. It was found 
to work well for high resolution and mostly undistorted 
images of checkerboards. For distortions as introduced by 
omnidirectional cameras, however, not necessarily the closest 
corner should be matched to a given corner, as Fig. 6 
illustrates. Correct corner matching is of utmost importance; 
mismatches disturb the structure of the extracted pattern and 
therefore invalidate all further steps. Our proposition for a 
solution of this issue comes in the form of an enhanced 
heuristic which can be geometrically verified to work even 
under severe distortions: 

For every corner of every found quadrangle compute the • 

distance to every corner of every other quadrangle and 
check whether the distance is shorter than the shortest 
edge length of both of the two involved quadrangles. 
If true, accept the two corners as a candidate neighbor 
pair. 
For each candidate pair, focus on the quadrangles they • 

belong to and draw two straight lines passing through 
the midsections of the respective quadrangle edges (see 
Fig. 6). 
If the candidate corner and the source corner are on the • 

same side of every of the four straight lines drawn this 
way (this corresponds to the yellow shaded area in Fig. 
6), then the corners are successfully matched. 

C. Adaptive Quadrangle Linking Distance 

As mentioned in Section II­A.5, quadrangles only get 
linked if their corners are less than a certain distance 
apart. In the original implementation, inaccurately, the 
shortest edge length of the two involved quadrangles was 
chosen for this distance limit. If the checkers are large w.r.t 
erosion, the error introduced is small. But for low resolution 



Fig. 7. Visualization of “matching over different dilation runs” procedure. 
Top: reference pattern (light green). Clearly the bottom checkers have not 
been identified. Middle: red quadrangles indicate candidate checkers found 
in another erosion run. Bottom: addition of some of these candidates to the 
reference pattern (bold red quadrangles). 

images, erosion has a large effect on the overall size of the 
quadrangle, which may result in a drastic reduction of the 
smallest edge length. Therefore the distance measure was 
adapted to incorporate the effect of erosion: 

dlimit = shortest edge length + 2 · erosion, (1) 

where the factor two is due to the erosion acting on both 
quadrangles. 

D. Linking of Quadrangles over Multiple Erosion Runs 

Through the mirror of an omnidirectional camera, blur is 
radially unevenly spread: depending on the focal distance 
of the camera, either points toward the center or toward the 
border of the image tend to be more blurred. Because of this 
anisotropy, not all quadrangles are separated during the same 
erosion run. Some of them may even only start to separate 
when smaller ones have already completely disappeared. 
Therefore the problem may be encountered that even though 
many quadrangles are successfully identified spread over 
multiple iterations, not all of them appear in a single one. We 
therefore tried to match patterns of found quadrangles over 
different erosion runs, by combining partial into complete 
results. The algorithm was thus expanded as follows: the 
pattern, where most quadrangles had been found is selected 
as “reference pattern”. In a second (new) part, all previously 
found quadrangles of all erosion runs are tried to be matched 
to the border of the above defined reference pattern. Upon 
successful match, the reference pattern is updated to include 
the new quadrangle and the whole process is repeated until 
no more additions are reported. Fig. 7 visualizes this second 
part in a sequence of images. 

E. Adaptation of the Polygonal Approximation Level 

As described in Section II­A.4, extracted contours are sent 
to a polygonal approximator, which tries to fit quadrangles 
onto them. Depending on how much the approximated poly­
gon is allowed to deviate from the true contour (deviation 
threshold), due to blur connected checkers are sometimes 
mistakenly approximated as a single quadrangle, which 

again disturbs the resulting pattern. Decreasing the deviation 
threshold leads to the identification of a substantially smaller 
amount of quadrangles. At the same time, false positives 
detection is reduced as well. Therefore we decided to restrict 
the approximation of contours to a conservative level (i.e. 
select a low deviation threshold) in the first part of the 
algorithm, practically guaranteeing the extraction of correct 
quadrangles at the price of the number of found objects. 
The now smaller reference pattern is then introduced into 
the new part two of the algorithm (see Section III­D), where 
the polygonal approximation threshold is again increased. 

The idea is then to try matching quadrangles found during 
the most strongly eroded run to the reference pattern first 
(i.e. introducing runs in reverse order), as there the chance 
of separated checkers is highest. Addition of heavily eroded 
quadrangles to the reference structure decreases corner lo­
calization, however. With this adaptation, correct pattern 
extraction is therefore favored over corner accuracy. 

F. Relative Importance 

The adaptation of the erosion kernels and especially 
the introduction of a new linking heuristic were found 
to be the most important enhancements. They both deal 
with the changes to the checker pattern as introduced by 
omnidirectional camera distortions, while at the same time 
preserving the detection rate of the original implementation 
for regular images. The other improvements only start having 
a significant effect on very low resolution and blurred images 
(see Section IV­B). 

IV. TEST IMAGE ANALYSIS 

In this section, 6 test image sets containing 10 images 
each are analyzed. Typical camera­mirror setups of various 
quality have been considered. The number of found corners 
per image and the corner localization accuracy is compared 
between the original OpenCV implementation and our pro­
posed method. First, however, prerequisites for successful 
corner extraction are discussed. 

A. Prerequisites 

Corner extraction using both OpenCV and our method 
is dependent on a black and white checkerboard of any 
reasonable size (sizes of 5x6 and 6x7 inner corners have 
been shown to work well), with a white border around it 
of at least one checker width (see Fig. 8). If you plan 
on using the algorithm in cases of extreme back light or 
overhead lighting, consider using a checkerboard with an 
even wider white border. Additionally, use a camera with as 
high a resolution as possible, try to minimize overall blur, but 
especially around small checkers and make sure that none of 
the checkers touch the border or got occluded. 

B. Results 

For an overview of the test image sets chosen, refer to 
Table I. Sets no. 1­3 have been taken with a Sony XCD­
SX910 camera (high resolution) combined with a hyperbolic 
mirror; sets no. 4 and 5 with a Philips ToUCam Fun camera 



Fig. 8. A 7x6 inner corner checkerboard with a white border of exactly 
one checker width. 

TABLE I

TEST IMAGE SETS


Fig. 9. Calibration images which best reflect the average performance of 
the algorithm for test set 1. Left: OpenCV. Right: our approach. 

TABLE IV 
TEST IMAGE SET 3 

Img. set Resolution Blur Brightness Camera­mirror shape Method OpenCV Our method 
Set 1 1280x960 no daylight hyperbolic, central 
Set 2 1280x960 no reduced iris hyperbolic, central Mean 
Set 3 1280x960 yes daylight hyperbolic, central Min 
Set 4 640x480 no daylight Christmas ball, non­central Max 
Set 5 640x480 no daylight spherical, central 
Set 6 640x480 yes daylight spherical, central 

Number of found corners Number of found corners 
11.4 of 30 29.7 of 30 

3 28 
21 30 

Corner inaccuracy [pxl] Corner inaccuracy [pxl] 
Mean 1.48 0.62 

(low resolution, large depth of field, Fig. 1 bottom) combined 
with a Christmas ball and a spherical mirror respectively; set 
no. 6 with a Philips SPC 300 camera (low resolution, narrow 
depth of field, Fig. 1 top) combined with a spherical mirror. 
For set no. 4, we used a Christmas ball in order to show that 
our method also works for other concave mirrors. 

For sets no. 1, 2, 4, and 5 (no blur) corner inaccuracy 
is measured with respect to a reference extraction (manual 
preselection followed by a Harris corner extraction in the 
selected area). For sets no. 3 and 6 (blur), manual corner 
selection alone is defined as reference. Images displaying 
the average number of found corners for test sets no. 1 and 
6 are depicted in order to convey a feeling for the relative 
performance between the two implementations at different 
test conditions (Fig. 9 and 10). 

TABLE II 
TEST IMAGE SET 1 

Method OpenCV Our method 
Number of found corners Number of found corners 

Mean 37.2 of 42 42 of 42 
Min 18 42 
Max 42 42 

Corner inaccuracy [pxl] Corner inaccuracy [pxl] 
Mean 1.46 0.68 

Variance 0.13 0.17 

TABLE III 
TEST IMAGE SET 2 

Method OpenCV Our method 
Number of found corners Number of found corners 

Mean 37.4 of 42 41.5 of 42 
Min 30 37 
Max 42 42 

Corner inaccuracy [pxl] Corner inaccuracy [pxl] 
Mean 1.43 0.69 

Variance 0.15 0.20 

Variance 0.23 0.63 

C. Discussion 

The results show that our approach consistently outper­
forms OpenCV, except on high­resolution and nearly planar 
images (test set no. 1) where they are on equal footage. Our 
algorithm notably also works well in conjunction with non­
hyperbolic mirrors (test sets no. 4, 5, and 6). Furthermore, 
corner localization is shown to have an average error of less 
than one pixel, compared to reference. If not much blur is 
present in the calibration images, a Harris corner finder as 
implemented into most toolboxes is able to negate this error. 

D. Issues with Our Approach 

The following two examples are intended to give the 
reader an understanding on issues which could arise during 

TABLE V 
TEST IMAGE SET 4 

Method OpenCV Our method 
Number of found corners Number of found corners 

Mean 28 of 42 41.7 of 42 
Min 14 40 
Max 39 42 

Corner inaccuracy [pxl] Corner inaccuracy [pxl] 
Mean 1.77 0.97 

Variance 0.55 0.84 

TABLE VI 
TEST IMAGE SET 5 

Method OpenCV Our method 
Number of found corners Number of found corners 

Mean 26.8 of 42 41.4 of 42 
Min 10 36 
Max 36 42 

Corner inaccuracy [pxl] Corner inaccuracy [pxl] 
Mean 1.05 0.79 

Variance 0.51 0.31 



TABLE VII 
TEST IMAGE SET 6 

Method OpenCV Our method 
Number of found corners Number of found corners 

Mean 8.3 of 42 33.4 of 42 
Min 3 23 
Max 15 42 

Corner inaccuracy [pxl] Corner inaccuracy [pxl] 
Mean 1.08 1.05 

Variance 0.35 0.90 

Fig. 10. Calibration images which best reflect the average performance of 
the algorithm for test set 6. Left: OpenCV. Right: our approach. 

the checkerboard pattern extraction. 
1) Importance of a Wide Border around the Checker­

board: When taking pictures against bright light sources, 
the adaptive threshold is disturbed into believing that the 
white checkerboard border is actually black. We stress the 
importance of a wide enough white border. 

2) Small Checkers in Low Resolution Images: Figure 11 
belongs to test image set no. 5. Close inspection of the 
matching process shows that during one erosion run the 
bottom right checkers are too small to be recognized as 
quadrangles; during the next erosion run, however, they are 
already grown together with their neighbor checker. In such 
cases, which happen only for very small checkers in low­res 
images, corner extraction for the involved checkers fails. 

V. CONCLUSION 

In this paper an existing method for identifying checker­
boards on calibration images was analyzed. This method then 
served as the starting point for the adapted and improved 
method described in Section III. The enhancements to the 
code proved to dramatically increase the corner output for 
low resolution and blurred images, consistently returning 
80% and more of the corners present, compared to as low as 
20% for the existing method. On higher resolution images, 
nearly 100% corner recognition was obtained. False positive 
detection was found to be very low, provided the image 

Fig. 11. Bottom checkers of the board are not recognized: During one 
erosion run they are too small for recognition (left image), during the next, 
however, already grown together with their neighbor checker (right image). 

acquisition prerequisites from Section IV­A are fulfilled. This 
shows the strength of the algorithm: it builds on top of and 
enhances the openCV implementation using the refinements 
described earlier, and thus works just as well on nondistorted 
images as the original approach, but consistently outperforms 
it in low resolution, highly distorted and/or blurred images. 
We therefore believe it to be well suited for implementation 
into a wide range of camera calibration toolboxes, which 
could notably benefit from automatic calibration routines. 

A standalone executable of the algorithm was then gener­
ated. Via a Matlab based interface it may be easily integrated 
into any of the available camera calibration toolboxes. The 
complete source code, the executable and a sample interface 
are available online [15]. 

REFERENCES 

[1] B. Micusik, Two View Geometry of Omnidirectional Cameras. PhD

thesis, Center for Machine Perception, Czech Technical University in

Prague, 2004.


[2] R. Benosman and S. B. Kang, editors. Panoramic vision: sensors,

theory, and applications. Monographs in computer science. Springer

Verlag, New York, 2001.


[3] R.Y. Tsai, An Efficient and Accurate Camera Calibration Technique

for 3D Machine Vision. Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, Miami Beach, FL, pp. 364­374, 1986.


[4] Zhengyou Zhang. A Flexible New Technique for Camera Calibration,

IEEE Transactions on Pattern Analysis and Machine Intelligence,

Volume 22, Issue 11, pp.: 1330 ­ 1334. November 2000.


[5] R. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision. Cambridge University Press, ISBN: 0521540518, second ed.,

2004.


[6] Scaramuzza, D., Martinelli, A. and Siegwart, R. A Toolbox for Easy

calibrating Omnidirectional Cameras. In Proc. of IROS’06, pp. 5695­

5701, China, October 2006, Beijing, (2006).


[7] C. Mei and P.	 Rives, “Single view point omnidirectional camera

calibration from planar grids,” in IEEE International Conference on

Robotics and Automation, April 2007.


[8] C. Geyer and K. Daniilidis,	 “Paracatadioptric camera calibration,”

IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 24, pp. 687–695, may 2002.


[9] 19. Y. Ma, S. Soatto, J. Kosecka, S. Sastry, An invitation to 3D vision,

from images to geometric models models, Springer Verlag, ISBN­0­

387­00893­4. 2003.


[10] J. Gluckman and S. Nayar, “Ego­motion and omnidirectional cam­
eras,” in 6th International Conference on Computer Vision, pp. 999– 
1005, 1998. 

[11] S. Kang, “Catadioptric self­calibration,” in IEEE International Con­
ference on Computer Vision and Pattern Recognition, pp. 201–207, 
2000. 

[12] Micusik, B. and Pajdla, T. Estimation of omnidirectional camera model 
from epipolar geometry. In Proc. of CVPR. ISBN 0­7695­1900­8, US, 
June 2003, IEEE Computer Society, Madison, (2003). 

[13] S. Bougnoux, “From projective to euclidean space under any practical 
situation, a criticism of self­calibration,” in 6th International Confer­
ence on Computer Vision, pp. 790–796, 1998. 

[14] Bouguet, J.­Y. Camera Calibration Toolbox for Matlab: 
http : //www.vision.caltech.edu/bouguetj/calib doc 

[15] Scaramuzza,	 D. Omnidirectional Camera Calibration Toolbox 
for Matlab: Google for “ocamcalib”, or go directly to 
http : //asl.epf l.ch/̃scaramuz/research/ 
Davide Scaramuzza f iles/Research/OcamCalib T utorial.htm 

[16] Mei, C. Omnidirectional Camera Calibration Toolbox for Matlab: 
http : //www.robots.ox.ac.uk/̃cmei/T oolbox.html 

[17] Vezhnevets, V. OpenCV Calibration Object Detection: 
http : //graphics.cs.msu.ru/en/research/calibration/ 
opencv.html 

[18] Intel Corporation. Open Source Computer Vision Library: 
http : //www.intel.com/technology/computing/opencv 


