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Abstract— In this paper, we describe the components of a
novel algorithm for the extraction of dominant orthogonal
planar structures from monocular images taken in indoor envi-
ronments. The basic building block of our approach is the useof
vanishing points and vanishing lines imposed by the frequently
observed dominance of three mutually orthogonal vanishing
directions in man-made world. Vanishing points are found byan
improved approach, taking no assumptions on known internal
or external camera parameters. The problem of detecting
planar patches is attacked using a probabilistic framework,
searching for the maximum a posteriori probability (MAP)
in a Markov Random Field (MRF). For this, we propose a
novel formulation fusing geometric information obtained from
vanishing points and features, such as rectangles and partial
rectangles, together with a color-homogeneity criteria imposed
by an image over-segmentation.

The method was evaluated on a set of images exhibiting
largely varying characteristics concerning image quality and
scene complexity. Experiments show that the method, despite
the variations, works in a stable manner and that its perfor-
mance compares favorably to the state-of-the-art.

I. I NTRODUCTION

In the last years the interest in designing mobile robots for
domestic tasks has been rapidly growing within the robotics
community. Besides being an important field of its own
right, building scalable and affordable platforms in response
to the diverse application scenarios targeted at by industry
represents a tempting goal for robotics research.

In this context, solutions solely based on visual sensory
input are moving still more into the center of interest. On
one side there is the economical factor pushing down prices
of robots by avoiding expensive sensors, on the other hand,
images or video acquired by cameras already contain rich
information to harvest for tasks such as scene understanding,
localization, and navigation. Consequently, during the last
years the work on vision-based systems has emerged as a
very challenging area from practical and scientific point of
view. There is an enormous effort, partially propelled by the
cognitive vision research field, to perceive and understanda
scene just from visual information.

In this paper, we describe a novel approach devised to help
a robot to understand the content of a scene, given a single
image. To be more specific, we propose a method for decom-
posing a single monocular image, possibly stemming from
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Fig. 1. Proposed sequential chain leading to detection of orthogonal
planes in a monocular image. (a) The input image (844×1126 pixels)
with vanishing lines depicted. (b) Detected lines consistent with three
automatically estimated orthogonal vanishing points. (c)Detected partial
and complete quadrilaterals utilizing the vanishing points and lines pointing
to them. (d) Final segmentation of planes based on a Markov Random Field
formulation employing vanishing points, lines, and quadrilateral segments.

a non-calibrated camera, into orthogonal planes, see Fig. 1.
Finding these planes in the image can significantly aid a
robot in self localization, navigation and further recognition
of objects or landmarks dominating indoor environments,
such as windows, doors, tables, chairs, etc. A priori, we
design a method for non-calibrated acquisition settings tobe
able to also handle cases for which either the internal camera
parameters are unknown, or are likely to be imprecise. In
experiments it is shown that the method is able to extract
a significant amount of structural information from a single
monocular image. However, a later merging of entire image
sequences will greatly contribute to a stabilization of the
whole process.

The general concept of the proposed chain is related to
previous approaches [1], [2], [3], [4]. However, we formulate
the problem in a probabilistic graph-based framework allow-
ing to solve it on a more global level than before. The paper
is in its spirit and goals most similar to the recent state-of-
the-art work of Hoiem et.al. [4]. They use learnt appearance
models based on various geometric, color, and texture cues to
partition an image into coarse 3D surface entities. We show
that even without learning and by applying less cues we can
still compete with their method.



The novelty of the paper is two-fold. First, an adopted
RANSAC-based line clustering stage for detecting vanishing
points and lines consistent with them is described, improving
in stability over previous techniques. Second, we formulate
the problem of detecting planes in a monocular image using
the estimated vanishing points in a probabilistic framework
based on searching for maximum a posteriori probability
(MAP) of a Markov Random Field (MRF).

In our approach we partially exploit the so-calledMan-
hattan world assumption. I.e., the frequently observed dom-
inance of three mutually orthogonal vanishing directions in
man-made environments [5]. Motivated by ideas presented
in [6], we adopted a RANSAC-based line clustering tech-
nique which is able to find dominant vanishing directions
in a robust manner. The suggested method takes constraints
imposed by a calibrated camera into account; however
internal camera parameters do not have to be known a
priori as they are estimated during the clustering process.
The vanishing point estimation is followed by a search for
perspectively distorted rectangles - basic landmarks in man-
made environments that are helping further to set the priors
for our MRF-based plane detection method. We propose
how the estimated vanishing points should be utilized for
a suitable setting of weights for edges and vertices of the
graph representing the MRF we are operating on.

The method is intent to be applied on mobile platforms
where real-time, or at least close to real-time performance,
is required. The proposed steps are designed with respect
to that, so they can be efficiently coded to fulfill such a
requirement.

The structure of the paper is as following. First, the
estimation of vanishing points and lines pointing to them
is explained in Sec. II followed by Sec. III with a short
description of the detection of quadrilateral structures.An
Explanation of our MRF-based approach for final localiza-
tion of planes in an image is given in Sec. IV. We summarize
the entire algorithm in Sec. V and report experimental results
in Sec. VI.

II. VANISHING POINT DETECTION

Man-made environments generally exhibit strong regular-
ity in structure and often many parallel lines are present. In
such settings, vanishing points provide useful visual cuesfor
deducing information about the 3D structure of an imaged
scene. Furthermore, if two or more vanishing points are
found of which the underlying structure’s orientations are
assumed to be orthogonal, then, taking mild assumptions,
internal camera parameters can be estimated.

In the following sections, a brief outline of the involved
processing stages and the line error model in use is given.

A. Line detection

Initially, connected edge segments are found utilizing a
Canny-edge detector with subpixel accurate non-maxima
suppression and adaptive hysteresis-thresholding. Following
directional edge linking, line candidates are extracted using
the iterative subdivision scheme from [7]. The resulting line

Fig. 2. Comparison of the method [8] and our proposed algorithm on
an image of a cluttered scene. Line sets corresponding to each of three
detected vanishing points, differentiate by color, are shown. Notice that the
orthogonal set of vanishing points, depicted by memberships of lines to
them, was estimated incorrectly by the method [8], but correctly by our
algorithm. White lines in the left image correspond to noisylines, not
associated with any vanishing point.

segments are refined by a Total Least Squares fit to the edge
segments pixel coordinates and short lines or lines with low
fitting quality are rejected [8].

For images with low resolution a substantial increase in
the number and quality of detected line segments can be
achieved by up-sampling the image by factor two prior to
edge detection [9].

B. RANSAC-based line clustering

In this stage vanishing point hypotheses are repeatedly
generated through the intersection of lines. The intersection
points having a large enough set of lines pointing towards
them are likely to be true vanishing points and are reconsid-
ered in further processing stages.

1) Line segment error: To quantify the error of a line
segment meeting a vanishing point, an ideal line from the
segment’s midpoint to the vanishing point is constructed
and the normal distance of one segment endpoint to this
line is measured. Formally, this distance can be written as
d2(ai, āi), whereai is the measured line segment endpoint,
andāi is its root point on the ideal line. The described model
is based on the assumption that there is little variation in
the midpoint of the line segment, as it is the mean of the
involved pixel positions. Other error models can be found
in [10], [11].

2) Iterative RANSAC: Since the actual mixture fraction
of lines belonging to different vanishing points is unknown,
we adopt the adaptive variant proposed in [12]. Specifically,
we run the algorithm several times over the dataset and
successively remove the largest found inlier set from the data
before the next trial. After each trial, the vanishing point
position is refined by applying Kanatani’srenormalization
scheme [13] to the respective consensus set. We reject newly
detected vanishing points if they lie within the uncertainty of
previously detected ones utilizing the test statistics proposed
in [6]. Here, however, we adopted the vanishing point covari-
ance matrices obtained byrenormalization. The iteration is
stopped, if no more consensus sets with a cardinality above
a predefined threshold are found.

3) Candidate selection & camera calibration: Depending
on the complexity of the scene the described clustering
typically results in numbers of three up to ten vanishing point



candidates. From this set we exhaustively select vanishing
point triples and retain only those with approximately or-
thogonal projective rays. Finally, from the remaining triples
the one having the largest total consensus set is chosen as
the final estimate of the dominant orthogonal structure.

In the case of unknown internal camera parameters, the
camera calibration necessary for the orthogonality test can
be carried out individually for each triple of vanishing points.
For this we have chosen the composite calibration method
described in [13], assuming square pixels and the camera’s
principle point to be located in the center of the image.
Our experiments have shown that a further refinement of
its position often caused unstable calibration results, thus we
did not consider it further.

C. Comparison to other known methods

In preliminary experiments, we compared our method to
implementations of two state-of-the-art methods [8], [14]
provided by the authors. We found our algorithm to give
qualitatively comparable results to the latter, however usually
running five to ten times faster, see Fig. 2 for comparison.

III. QUADRILATERAL DETECTION

Human made environments contain many rectangular
structures. These, depending on occlusions and the camera’s
field of view, are projected as complete quadrilaterals or
incomplete parts (e.g., U- or L-shaped features) thereof. Such
features represent strong visual cues for the detection of
planar surfaces and consequently are of aid to the task of
scene reconstruction and understanding.

In our work we use a perspective rectangle detection
method related to the approach of [1], however, applying a
probabilistic graph-based method. Line segments compatible
with a vanishing line, i.e., the two vanishing points generat-
ing it, are grouped by principles of proximity and continuity
and a probabilistic inference is used to find hypotheses
for quadrilateral-shaped structures in the graph. On of the
major advantages of our approach is that it does not only
detect perspectively distorted rectangles, but also sub-parts
if they are compatible with the initial plane-hypothesis. For
an example of the features found, see Fig. 1.

As this method is currently under a reviewing process,
further technical details will be omitted here. However, it
can be easily replaced with other techniques, such as the
one presented in [2], [15].

IV. MRF BASED PLANE DETECTION

Having detected vanishing points and lines pointing to
them we want to assign to each pixel in an image its 3D
orientation w.r.t. to a camera coordinate system. As we
assume a Manhattan world structure, this is equivalent to
assign one of three labels, where each label corresponds to
one of three orthogonal planes.

To solve the problem on a global level, i.e. to allow
to take into account prior information about possible pixel
orientations and relations between neighboring pixels simul-
taneously, we formulate the problem in a fully probabilistic
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Fig. 3. An example 3×4 grid graphG for |X | = 3 labels with symbols
explained in the text. A labelingL, i.e. solution, from Eq. (2) is shown by
a red thick subgraph. Image provided by courtesy of T. Werner[17].

framework; as searching for a maximum posterior (MAP)
configuration of the Markov Random Field (MRF) [16]. It
has been shown [17] that the solution can be found as a
Gibbs distribution with maximal probability, i.e., by solving
the so called labeling or Max-sum problem of second order -
maximizing a sum of bivariate functions of discrete variables.

We assume an MRF, i.e., a graphG = 〈T , E〉, consisting of
a discrete setT of objects (in the literature also called sites,

or locations) and a setE ⊆
(

|T |
2

)

of pairs of those objects.
Each objectt ∈ T is assigned a labelxt ∈ X whereX is
a discrete set. Alabeling is a mapping that assigns a single
label to each object, represented by a|T |-tuple x ∈ X |T |

with componentsxt.
An instance of the Max-sum problem is denoted by the

triplet (G,X ,g), where the elementsgt(xt) andgtt′(xt, xt′)
of g are calledqualities. The quality of a labelingx is defined
as

F (x |g) =
∑

t

gt(xt) +
∑

{t,t′}

gtt′(xt, xt′). (1)

Solving the Max-sum problem means finding the set of
optimal labellings

LG,X (g) = argmax
x∈X |T |

F (x |g). (2)

Fig. 3 depicts the symbols and the problem in a more intuitive
way on a simple grid graph. Recently, very efficient algo-
rithms for solving this problem through linear programming
relaxation and its Lagrangian dual, originally proposed by
Schlesinger in 1976 [18], has been reviewed [19], [17], [20].

A. Graph entities

Generally, the most difficult problem and art connected
to MRF based methods is to encode all possible priors
about objects being labeled (e.g., orientation, texture, color,
shape, appearance) into a graph, i.e., a MRF, while still
keeping the problem tractable. The priors we utilized lead to
partitioning an image into geometrically and color coherent
regions as Fig. 1 shows.

We build a graph on an over-segmented image, i.e., on
superpixels, see Fig. 4, to keep the running time in reasonable
bounds. The idea is to locally merge pixels with similar
color together. The use of superpixels significantly reduces



the number of objects in the graph, still preserving texture
information. Simply reducing the image size and building
an MRF on pixels to avoid the large complexity as imple-
mented in many approaches leads to losing details and high
texture frequencies. In this paper, we use the fast Minimum
Spanning Tree based method by Felzenszwalb [21], giving
us, by appropriate setting of parameters,500-800 regions on
average. However, any other over-segmentation can be used.

The graph entities are the following. The superpixels
represent objects, i.e. the setT , in the graph and edges,
i.e. the setE , are established between each two neighboring
superpixels. The number of nodes (labels)K is 4, that is,
we use one label for each orthogonal plane and one label
for “undecided” to allow the solver mark the places where
there is not enough information to decide which plane the
superpixel belongs to.

Each edgegtt′(xt, xt′) and each object nodegt(xt) is set
accordingly to the smoothness and data term respectively,
described in the following sections. After building and setting
the graph, the Max-sum solver [17] is run to obtain a
particular labelxt for each superpixelt.

B. Smoothness term

The smoothness termgtt′(xt, xt′) controls the mutual
bond of neighboring superpixels. In our case we take into
account the color difference between superpixels and the
straightness of the common boundary. This can be written
as follows

gtt′(xt, xt′) = exp
(

α‖ut − ut′‖
2
)

− β Sst
tt′ , (3)

whereut is a 3-element color vector of thet-th superpixel
(mean color of all pixels belonging to that superpixel) and
α < 0 is a parameter pre-set to−10. We representut in the
Lab color space because of the perceptual non-uniformity
of the standard RGB space.Sst

tt′ =
P

N
i

length linei

length boundary is a sum
of lengths ofN lines fitted to the shared boundary between
two superpixelst andt′ (longer than20 pixels), see Sec. II-
A, normalized by the length of the boundary. The parameter
β controlling the influence of the smoothness term, was set
to 0.5 in our experiments.

The proposed smoothness term in Eq. (3) tends to merge
superpixels with similar color and jagged boundaries. Such
jagged boundaries are usually produced accidentally due to
weak gradients [21] and therefore do not correspond to real
splits of two superpixel patches in the scene.

C. Data term

The data termgt(xt) encodes the quality of assigning
a label x from the setX to an object/superpixelt in the
graph. The quality measures how the superpixel itself suits
to particular class models, in our case, to lie on one of the
orthogonal planes.

For each superpixel 4 numbers are needed to be set,
i.e., how likely is that the superpixel is marked by one of
four labels. The first three labels stand for the belief that
a superpixel lies on one of the three orthogonal planes; the
forth label encodes the level of “undecidedness”.

Fig. 4. Left: Superpixels detected in the image from Fig. 1. Each
region corresponds to one object in the constructed graph. Right: The
smoothness term. Boundary-color encodes the penalty set inthe graph
between the objects corresponding to two neighboring superpixels. Darker
coloring denotes less penalization. Note, that straight boundary segments
are penalized stronger.

The consistency of a superpixel to a plane is expressed
via a deviation of gradient orientations of the pixels along
the boundary of the superpixel to two vanishing points
corresponding to that plane. For computation of the gradient
orientations we use the 5-component gradient mixture model
described in [5]. For each image pixel, the model gives the
probability of the pixel lying on an edge, the membership
to one of the three vanishing points, and the probability of
being noise. We take into account only those pixels having
a probability of being on an edge above a certain threshold.
Then, a normalized histogramht(y) with four bins y =
{1, 2, 3, 4} is computed from vanishing point memberships
of all pixels lying along thet-th superpixel boundary. The
fourth bin accumulates points classified to be on an edge,
however, not consistent with any vanishing point direction.

Finally, the consistency of the superpixel with each label
is set as

gt(x) =

{
∑

3

i=1
i6=x

ht(i) if x = {1, 2, 3},

ht(x) if x = 4.
(4)

In the data term, two additional priors are utilized. One
stemming from the position of ideal lines and one from
detected quadrilateral segments. The ideal line is defined as a
line passing through two vanishing points and is a projection
of an intersection of a 3D plane with a plane at infinity [12].
It gives us the constraint that a superpixel detected in the
image cannot cross the ideal line of the plane it belongs to.
The data term of such superpixels is set to zero to decrease
the belief of them to lie on a particular plane. Fig. 1 shows
two ideal lines where one corresponds to a ground plane.
Notice that this line, called a horizon, is completely above
the ground plane and therefore superpixels on that plane are
not allowed cross the horizon.

The second prior comes from the fact that all superpixels
behind detected quadrilateral segments, see Sec. III, haveto
lie on the plane where the segments are detected. The data
term of such superpixels is increased or set to a high value in
order to strengthen the belief of them to lie on that particular
plane.

V. A LGORITHM

We shortly summarize the main steps leading to the final
detection of orthogonal planes in a monocular image. The



algorithm consists of sequential steps for the detection of
1) lines and vanishing points coming from their intersec-

tions as the largest total consensus sets corresponding
to orthogonal directions.

2) quadrilaterals or their parts corresponding to rectangles
or their parts in a scene.

3) orthogonal planes in a scene based on an MRF frame-
work formulated on over-segmented image; utilizing
vanishing points, ideal lines and quadrilaterals.

VI. RESULTS

We evaluate the proposed method on large variety of
indoor images downloaded from the Internet. Some of the
most representative are shown in Fig. 5. The images are
approximately 1 Mpixel large and their quality varies since
they were taken by different, to us unknown, cameras under
different illumination conditions. The results show feasible
and stable performance, although light reflections, shadows,
jpg-artifacts, and occlusions, are present in the images.

Fig. 5 shows each image segmented into 4 labels, three for
each orthogonal plane and one for “undecided”. We compare
our method to the state-of-the-art method [4] aiming at
exactly the same goal, i.e. at recovering surface layout from
a single image. To produce the results of [4] the publicly
available code1 was used in combination with a provided
indoor classifier. The presented results show comparable
performance of our method and often achieving better results.
Moreover, the run-time of our method was shorter, 1 min on
average, while the method of [4] took 3 min using the same
Pentium 4@2.8 GHz.

The proposed method is currently mostly implemented
in unoptimized MATLAB and many of the routines and
functions can be re-implemented in a much more efficient
way in C/C++. For finding the MAP of the MRF we use
a publicly available2 C++ implementation of the Max-sum
solver [17].

It can be seen in Fig. 5 that at some places, especially
at connections of planes, our result is not always correct.
This is caused by either superpixel missing the true boundary
and thus overlapping two planes. Or, there is an occlusion
present, i.e., one plane partially occludes the other. In the
second case, the incorrect behavior comes from the data term
formulation, Eq. (4), as the superpixel is expected to contain
two strong gradient directions only. In the case of the occlu-
sion, e.g. a table leg touching a floor, the superpixel covering
a part of the floor and touching the leg contains pixels at its
boundary which are pointing to a vertical vanishing point.
This may cause that the superpixel is incorrectly assigned
to one of the vertical planes. The resulting inconsistency,
depending on neighboring superpixels, cannot always be
solved by the smoothness term.

VII. C ONCLUSIONS

We have presented a novel algorithm for the extraction
of dominant orthogonal planar structures from monocular

1http://www.cs.cmu.edu/˜dhoiem/projects/software.html
2http://cmp.felk.cvut.cz/cmp/software/maxsum/

images, taken in indoor environments. We have shown that
even without learning by using basic geometric cues we can
still compete with the state-of-the-art-method aiming at the
same goal. Although the algorithm is a priori designed to
handle occlusion-free environments, it still provides reason-
able results in cluttered scenes. The presented framework
is intend on being a part of a robot’s “decision unit” for
understanding a surrounding scene and to further support
navigation.
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