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Abstract— In this paper, we describe the components of a M “ ‘- ,
novel algorithm for the extraction of dominant orthogonal | | lﬁ |l ,

planar structures from monocular images taken in indoor env-
ronments. The basic building block of our approach is the usef
vanishing points and vanishing lines imposed by the frequety
observed dominance of three mutually orthogonal vanishing
directions in man-made world. Vanishing points are found byan
improved approach, taking no assumptions on known internal
or external camera parameters. The problem of detecting
planar patches is attacked using a probabilistic framework
searching for the maximum a posteriori probability (MAP)
in a Markov Random Field (MRF). For this, we propose a
novel formulation fusing geometric information obtained from
vanishing points and features, such as rectangles and pasi
rectangles, together with a color-homogeneity criteria inposed
by an image over-segmentation.

The method was evaluated on a set of images exhibiting
largely varying characteristics concerning image qualityand
scene complexity. Experiments show that the method, despit

the variations, works in a stable manner and that its perfor- ’ (d)
mance compares favorably to the state-of-the-art. Fig. 1. Proposed sequential chain leading to detection tfogpnal
planes in a monocular image. (a) The input image (84#26 pixels)
|. INTRODUCTION with vanishing lines depicted. (b) Detected lines conaisteith three

. . o . automatically estimated orthogonal vanishing points. Detected partial
In the last years the interest in designing mobile robots faihd complete quadrilaterals utilizing the vanishing poind lines pointing

domestic tasks has been rapidly growing within the roboticg them. (d) Final segmentation of planes based on a Markadéta Field
community. Besides being an important field of its Owr{ormulatlon employing vanishing points, lines, and quiatieral segments.
right, building scalable and affordable platforms in respe
to the diverse application scenarios targeted at by ingustr
represents a tempting goal for robotics research. a non-calibrated camera, into orthogonal planes, see Fig. 1
In this context, solutions solely based on visual sensoifyinding these planes in the image can significantly aid a
input are moving still more into the center of interest. Omobot in self localization, navigation and further recdgm
one side there is the economical factor pushing down price$ objects or landmarks dominating indoor environments,
of robots by avoiding expensive sensors, on the other hargljch as windows, doors, tables, chairs, etc. A priori, we
images or video acquired by cameras already contain riakesign a method for non-calibrated acquisition settingseto
information to harvest for tasks such as scene underst@gndimable to also handle cases for which either the internal camer
localization, and navigation. Consequently, during th&t la parameters are unknown, or are likely to be imprecise. In
years the work on vision-based systems has emerged agxperiments it is shown that the method is able to extract
very challenging area from practical and scientific point o& significant amount of structural information from a single
view. There is an enormous effort, partially propelled bg thmonocular image. However, a later merging of entire image
cognitive vision research field, to perceive and understandsequences will greatly contribute to a stabilization of the
scene just from visual information. whole process.
In this paper, we describe a novel approach devised to helpThe general concept of the proposed chain is related to
a robot to understand thg content of a scene, given a singgavious approaches [1], [2], [3], [4]. However, we formtela
image. To be more specific, we propose & method for decorire problem in a probabilistic graph-based framework allow
posing a single monocular image, possibly stemming frofg to solve it on a more global level than before. The paper
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B. Mic¢uSik is with the Computer Science Department, @eoMason h K of . | h |
University, USA,bmi cusi k@nmu. edu. Most of the research was carried N€-art Work o HO|em et.al. [4]. T_ ey use learnt appearance
out during his stay at the institution of other two authors. models based on various geometric, color, and texture cues t

H. Wildenauer and M.Vincze are with the Automation and Con-partition an image into coarse 3D surface entities. We show
trol Institute, Faculty of Electrical Engineering and Infmation Tech-

nology, Vienna University of Technology, Austria{wi | denauer, th_at even W'tho_Ut |ear.nmg and by applymg less cues we can
vi ncze}@ci n. t uwi en. ac. at . still compete with their method.



The novelty of the paper is two-fold. First, an adopte(r
RANSAC-based line clustering stage for detecting vanighin
points and lines consistent with them is described, imprgvi
in stability over previous techniques. Second, we forneulat
the problem of detecting planes in a monocular image usir
the estimated vanishing points in a probabilistic framéwor
based on searching for maximum a posteriori probabilit

(MAP) of a Markov Random Field (MRF)' Fig. 2. Comparison of the method [8] and our proposed alyoribn
In our approach we partially exploit the so-callsthn-  an image of a cluttered scene. Line sets corresponding to ehthree
hattan world assumption. I.e., the frequently observed domdetected vanishing points, differentiate by color, arenshdNotice that the

inance of three mutually orthogonal vanishing directioms |?hr”:29w;s' :g:irg;t‘g”';zggegg}'/”t& ‘t’ﬁg'f;ee‘:hgz gf”gﬁfmb;g‘;:?
man-made environments [5]. Motivated by ideas present@gorithm. white lines in the left image correspond to nolses, not

in [6], we adopted a RANSAC-based line clustering techassociated with any vanishing point.

nigue which is able to find dominant vanishing directions

in a robust manner. The suggested method takes constraints

imposed by a calibrated camera into account; howevéggments are refined by a Total Least Squares fit to the edge
internal camera parameters do not have to be known Sggments pixel coordinates and short lines or lines with low
priori as they are estimated during the clustering procesiting quality are rejected [8].

The vanishing point estimation is followed by a search for For images with low resolution a substantial increase in
perspectively distorted rectangles - basic landmarks in-mathe number and quality of detected line segments can be
made environments that are helping further to set the priogghieved by up-sampling the image by factor two prior to
for our MRF-based plane detection method. We propogdge detection [9].

how the estimated vanishing points should be utilized fo : .

a suitable setting of weights for edges and vertices of the RANSAC-based line clustering
graph representing the MRF we are operating on. In this stage vanishing point hypotheses are repeatedly
The method is intent to be applied on mobile platformgenerated through the intersection of lines. The inteis@ct
where real-time, or at least close to real-time performancpoints having a large enough set of lines pointing towards
is required. The proposed steps are designed with resp#eem are likely to be true vanishing points and are reconsid-

to that, so they can be efficiently coded to fulfill such eered in further processing stages.
requirement. 1) Line segment error: To quantify the error of a line

The structure of the paper is as following. First, thesegment meeting a vanishing point, an ideal line from the
estimation of vanishing points and lines pointing to thensegment's midpoint to the vanishing point is constructed
is explained in Sec.ll followed by Sec.lll with a shortand the normal distance of one segment endpoint to this
description of the detection of quadrilateral structurés. line is measured. Formally, this distance can be written as
Explanation of our MRF-based approach for final localizad?(a;, ;), wherea; is the measured line segment endpoint,
tion of planes in an image is given in Sec. IV. We summariz&nda; is its root point on the ideal line. The described model
the entire algorithm in Sec. V and report experimental tesulis based on the assumption that there is little variation in
in Sec. VI. the midpoint of the line segment, as it is the mean of the

involved pixel positions. Other error models can be found
Il. VANISHING POINT DETECTION in [10], [11].

Man-made environments generally exhibit strong regular- 2) Iterative RANSAC: Since the actual mixture fraction
ity in structure and often many parallel lines are present. |of lines belonging to different vanishing points is unknown
such settings, vanishing points provide useful visual daes we adopt the adaptive variant proposed in [12]. Specifically
deducing information about the 3D structure of an imagede run the algorithm several times over the dataset and
scene. Furthermore, if two or more vanishing points arsuccessively remove the largest found inlier set from the da
found of which the underlying structure’s orientations ardefore the next trial. After each trial, the vanishing point
assumed to be orthogonal, then, taking mild assumptionggsition is refined by applying Kanatanifenormalization
internal camera parameters can be estimated. scheme [13] to the respective consensus set. We reject newly

In the following sections, a brief outline of the involveddetected vanishing points if they lie within the uncertpiot
processing stages and the line error model in use is giverpreviously detected ones utilizing the test statisticppsed

) ) in [6]. Here, however, we adopted the vanishing point cevari
A. Line detection ance matrices obtained bgnormalization. The iteration is

Initially, connected edge segments are found utilizing atopped, if no more consensus sets with a cardinality above
Canny-edge detector with subpixel accurate non-maxineapredefined threshold are found.
suppression and adaptive hysteresis-thresholding. wiokp 3) Candidate selection & camera calibration: Depending
directional edge linking, line candidates are extractadgis on the complexity of the scene the described clustering
the iterative subdivision scheme from [7]. The resultintgli typically results in numbers of three up to ten vanishingpoi




candidates. From this set we exhaustively select vanishing %@Jem’
point triples and retain only those with approximately or- i 3
thogonal projective rays. Finally, from the remaining legp
the one having the largest total consensus set is chosen as
the final estimate of the dominant orthogonal structure. 4 F n g =9
In the case of unknown internal camera parameters, the gt (wp=1)
camera calibration necessary for the orthogonality test ca
be carried out individually for each triple of vanishing pts.
For this we have chosen the composite calibration method
described in [13], assuming square pixels and the camera’s
principle point to be located in the center of the imagefig- 3. An example 34 grid graphg for | X'| = 3 labels with symbols
Our experiments have shown that a further refinement §f‘fe'g'?ﬁ‘ik'n5$‘;:aes;‘_ ?ngzil'B%;,i'dee‘dsgg‘ggﬂ’rtgg;noﬁlE,%,)e[';é‘}hown by
its position often caused unstable calibration resuliss the
did not consider it further.

7edges wnhg”, (x4, e )

ém/\ objectt with nodesx ¢

A

framework; as searching for a maximum posterior (MAP)
configuration of the Markov Random Field (MRF) [16]. It
In preliminary experiments, we compared our method tfas peen shown [17] that the solution can be found as a
implementations of two state-of-the-art methods [8], [14kipps distribution with maximal probability, i.e., by satg
provided by the authors. We found our algorithm to givghe so called labeling or Max-sum problem of second order -
qualitatively comparable results to the latter, howeverally  maximizing a sum of bivariate functions of discrete varésbl
running five to ten times faster, see Fig. 2 for comparison. \ye assume an MRF, i.e., a gra@h= (T, €), consisting of
a discrete sef of objects (in the literature also called sites,

. : or locations) and a sef C |72—| of pairs of those objects.
Human made environments contain many rectangular

structures. These, depending on occlusions and the cameFo\aC,h object € T |s.ass.|gned a l"’,‘be*t €& vvhere)( IS
field of view, are projected as complete quadrilaterals dt discrete set. Aa_\behng is a mapping that assigns a ‘sT|?gIe
incomplete parts (e.g., U- or L-shaped features) theraahS Iapel to each object, represented byT-tuple x € ¥
features represent strong visual cues for the detection Wfth components.

planar surfaces and consequently are of aid to the task ofAn instance of the Max-sum problem is denoted by the
scene reconstruction and understanding. triplet (G, X, g), where the elemenig () and g (21, vv)

In our work we use a perspective rectangle detectioﬂfg are calledqualities. The quality of a labeling is defined

method related to the approach of [1], however, applying as

probabilistic graph-based method. Line segments conlpatib F(x|g) = th(xt) + Z Gorr (L1, Tpr)- @)

with a vanishing line, i.e., the two vanishing points getera t {17}

ing it, are grouped by principles of proximity and contiit Solving the Max-sum problem means finding the set of

and a probabilistic inference is used to find hypothesesptimal labellings

for quadrilateral-shaped structures in the graph. On of the

major advantages of our approach is that it does not only Lg,x(g) = argmax F'(x | g). (2)

detect perspectively distorted rectangles, but also sutsp xexl7!

if they are compatible with the initial plane-hypothesisr F Fig. 3 depicts the symbols and the problem in a more intuitive

an example of the features found, see Fig. 1. way on a simple grid graph. Recently, very efficient algo-
As this method is currently under a reviewing procesgjthms for solving this problem through linear programming

further technical details will be omitted here. However, itrelaxation and its Lagrangian dual, originally proposed by

can be easily replaced with other techniques, such as tBehlesinger in 1976 [18], has been reviewed [19], [17], [20]

one presented in [2], [15].

C. Comparison to other known methods

I1l. QUADRILATERAL DETECTION

A. Graph entities

IV. MRF BASED PLANE DETECTION Generally, the most difficult problem and art connected

Having detected vanishing points and lines pointing tdo MRF based methods is to encode all possible priors
them we want to assign to each pixel in an image its 3@bout objects being labeled (e.g., orientation, textuoégre
orientation w.rt. to a camera coordinate system. As wghape, appearance) into a graph, i.e., a MRF, while still
assume a Manhattan world structure, this is equivalent teeping the problem tractable. The priors we utilized lead t
assign one of three labels, where each label correspondspiartitioning an image into geometrically and color cohéren
one of three orthogonal planes. regions as Fig. 1 shows.

To solve the problem on a global level, i.e. to allow We build a graph on an over-segmented image, i.e., on
to take into account prior information about possible pixesuperpixels, see Fig. 4, to keep the running time in readenab
orientations and relations between neighboring pixelsisim bounds. The idea is to locally merge pixels with similar
taneously, we formulate the problem in a fully probabitisti color together. The use of superpixels significantly reduce



the number of objects in the graph, still preserving textun
information. Simply reducing the image size and buildin
an MRF on pixels to avoid the large complexity as imple
mented in many approaches leads to losing details and hi|,
texture frequencies. In this paper, we use the fast Minimu
Spanning Tree based method by Felzenszwalb [21], givir
us, by appropriate setting of parametéi@)-800 regions on
average. However.,.any other over—seg.mentation can bg u S Sunernels detected in the image from Fia. BolE
The graph_ entltles are the fO”OW'ng' The superpixel egion.correspbndsptopone object in the construcgted grarir‘ljhtg:ll'iThe
represent objects, i.e. the s&t in the graph and edges, smoothness term. Boundary-color encodes the penalty séfteingraph
i.e. the set€, are established between each two neighboringtween the objects corresponding to two neighboring pies. Darker
superpixels. The number of nodes (labels)is 4, that is, ;?éoggﬁaﬁfggt:frolﬁgzr_penal'Zat'on' Note, that straighinblary segments
we use one label for each orthogonal plane and one label
for “undecided” to allow the solver mark the places where
there is not enough information to decide which plane the The consistency of a superpixel to a plane is expressed
superpixel belongs to. via a deviation of gradient orientations of the pixels along
Each edgey (x¢, x1/) and each object nodg(x;) is set the boundary of the superpixel to two vanishing points
accordingly to the smoothness and data term respectiveggrresponding to that plane. For computation of the gradien
described in the following sections. After building andtiisgt  orientations we use the 5-component gradient mixture model
the graph, the Max-sum solver [17] is run to obtain alescribed in [5]. For each image pixel, the model gives the
particular labelz, for each superpixel. probability of the pixel lying on an edge, the membership
to one of the three vanishing points, and the probability of
B. Smoothness term being noise. We take into account only those pixels having
The smoothness term, (z:, ) controls the mutual a probability of being on an edge above a certain threshold.
bond of neighboring superpixels. In our case we take intphen, a normalized histograrh,(y) with four binsy =
account the color difference between superpixels and the, 2 3 4} is computed from vanishing point memberships
straightness of the common boundary. This can be writtesf all pixels lying along thet-th superpixel boundary. The
as follows fourth bin accumulates points classified to be on an edge,
2 st however, not consistent with any vanishing point direction
gu (ze, 2r) = explalfu —up|) = 555, (@) Finally, the consistency of theysuperpixgl SVith each label
whereu, is a 3-element color vector of theth superpixel is set as

(mean color of all pixels belonging to that superpixel) and 23_1 he(i) if @ = {1,2,3}
a < 0 is a parameter pre-set tol0. We representy, in the (z) = { b T (4)
Lab color space because of the perceptual non-uniformity hi(z) if v =4.
N lengthline, i . .
of the standard RGB spacs}), = %ﬁt%& isasum  In the data term, two additional priors are utilized. One

of lengths of N lines fitted to the shared boundary betweergtemming from the position of ideal lines and one from
two superpixels and?’ (longer than20 pixels), see Sec.ll- detected quadrilateral segments. The ideal line is defined a
A, normalized by the length of the boundary. The parametgihe passing through two vanishing points and is a projectio
B controlling the influence of the smoothness term, was sef an intersection of a 3D plane with a plane at infinity [12].
to 0.5 in our experiments. It gives us the constraint that a superpixel detected in the

The proposed smoothness term in Eq. (3) tends to mergRage cannot cross the ideal line of the plane it belongs to.
superpixels with similar color and jagged boundaries. Suchhe data term of such superpixels is set to zero to decrease
jagged boundaries are usually produced accidentally due fige belief of them to lie on a particular plane. Fig.1 shows
weak gradients [21] and therefore do not correspond to reglo ideal lines where one corresponds to a ground plane.
splits of two superpixel patches in the scene. Notice that this line, called a horizon, is completely above
the ground plane and therefore superpixels on that plane are
) ~not allowed cross the horizon.

The data termg;(z;) encodes the quality of assigning The second prior comes from the fact that all superpixels
a labelz from the set' to an object/superpixel in the pehing detected quadrilateral segments, see Sec. 11, toave
graph. The quality measures how the superpixel itself SUif, on the plane where the segments are detected. The data
to particular class models, in our case, to lie on one of thgm of such superpixels is increased or set to a high value in

orthogonal planes. order to strengthen the belief of them to lie on that paréicul
For each superpixel 4 numbers are needed to be S?Fane.

i.e., how likely is that the superpixel is marked by one o

four labels. The first three labels stand for the belief that V. ALGORITHM

a superpixel lies on one of the three orthogonal planes; theWe shortly summarize the main steps leading to the final
forth label encodes the level of “undecidedness”. detection of orthogonal planes in a monocular image. The

C. Data term



algorithm consists of sequential steps for the detection of images, taken in indoor environments. We have shown that
1) lines and vanishing points coming from their interseceven without learning by using basic geometric cues we can
tions as the largest total consensus sets correspond®fjl compete with the state-of-the-art-method aiming e t
to orthogonal directions. same goal. Although the algorithm is a priori designed to
2) quadrilaterals or their parts corresponding to recesgl handle occlusion-free environments, it still providesswa
or their parts in a scene. able results in cluttered scenes. The presented framework
3) orthogonal planes in a scene based on an MRF framig- intend on being a part of a robot’s “decision unit” for
work formulated on over-segmented image; utilizinginderstanding a surrounding scene and to further support
vanishing points, ideal lines and quadrilaterals. navigation.

VI. RESULTS

We evaluate the proposed method on large variety of The research leading to these results has received funding
indoor images downloaded from the Internet. Some of thkom the European Community’s Sixth Framework Pro-
most representative are shown in Fig.5. The images aggamme (FP6/2003-2006) under grant agreement No. FP6-
approximately 1 Mpixel large and their quality varies since2006-1ST-6-045350 (robots@home) and US National Sci-
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they were taken by different, to us unknown, cameras undence Foundation Grant No. 11S-0347774.

different illumination conditions. The results show fddsi
and stable performance, although light reflections, shadow
jpg-artifacts, and occlusions, are present in the images. [1]

Fig. 5 shows each image segmented into 4 labels, three for
each orthogonal plane and one for “undecided”. We compare;
our method to the state-of-the-art method [4] aiming at
exactly the same goal, i.e. at recovering surface layoum fro
a single image. To produce the results of [4] the publicly
available code was used in combination with a provided
indoor classifier. The presented results show comparabl@]
performance of our method and often achieving better result
Moreover, the run-time of our method was shorter, 1 min oris]
average, while the method of [4] took 3 min using the same
Pentium 4@2.8 GHz. 6]

The proposed method is currently mostly implemented
in unoptimized MATLAB and many of the routines and
functions can be re-implemented in a much more efficien{
way in C/C++. For finding the MAP of the MRF we use
a publicly availablé C++ implementation of the Max-sum
solver [17].

It can be seen in Fig.5 that at some places, especiall{g]
at connections of planes, our result is not always correct.
This is caused by either superpixel missing the true boyndayi g
and thus overlapping two planes. Or, there is an occlusion
present, i.e., one plane partially occludes the other. & ﬂh
second case, the incorrect behavior comes from the data term]
formulation, Eq. (4), as the superpixel is expected to danta[12]
two strong gradient directions only. In the case of the OCCILfls]
sion, e.g. a table leg touching a floor, the superpixel cogeri
a part of the floor and touching the leg contains pixels at its
boundary which are pointing to a vertical vanishing point[14]
This may cause that the superpixel is incorrectly assigned
to one of the vertical planes. The resulting inconsistency45]
depending on neighboring superpixels, cannot always be
solved by the smoothness term. [16]

(3]

VII. CONCLUSIONS

We have presented a novel algorithm for the extractiof’!
of dominant orthogonal planar structures from monocular

[18]
Lhttp://www.cs.cmu.edu/~dhoiem/projects/software lhtm
2http://cmp.felk.cvut.cz/cmp/software/maxsum/
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