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Abstract—This paper proposes a real-time scene segmentation
method based on stereovision and intended for the use on a
home service robot. In the first step of our approach the input
disparity image is replaced by a lower resolution image. Its pixel
disparity values are the result of building histograms over small
neighbourhoods in the original image and selecting the maxima.
This significantly reduces noise as well as wrong matches, and
allows for meaningful local processing. Using constraints derived
from the geometry and kinematics of the system camera -
robot, ground plane pixels in the lower part of the image are
selected. A least squares plane fit is applied to these points
to determine the parameters of the ground plane and the
rest of the pixels is labelled either as ground point or object
point. Removal of the ground leaves single standing clusters of
disparities corresponding to objects, which serves as both input
for obstacle avoidance as well as object classification.

I. INTRODUCTION

In classic mobile robotics the main focus lies on safe naviga-

tion, that is, moving along a pre-planned path while avoiding

obstacles, and on self localisation. In service robotics these

capabilities alone are too little since there is no immediate

benefit for the user– they are merely a basic prerequisite. Also,

the way mobile robots perceive their environment significantly

differs from how humans do, thus human-robot-interaction

suitable for the ”average user” without technical training is

challenging: where the user sees a location in front of his

couch, the robot might just see a pose (x, y, θ).

The predominant sensor type is the 2D laser range finder

scanning parallel to the ground plane. In well-structured en-

vironments such as laboratories and offices, where vertical

surfaces (unobstructed walls, closets, file drawers) are domi-

nant, and together with 2D maps of the environment, obstacle

avoidance and self localisation work quite well with these

sensors. Domestic environments are typically more cluttered

and less structured, so that - except for simple automatic

vacuum cleaners and lawn mowers - there are no service robots

in the mass market.

The project robots@home1 aims at developing safe and

robust navigation methods that set the case for using robots

in homes everywhere, and at developing a vision-based per-

ception system for learning and mapping of the rooms and

classifying the main items of furniture (chair, table, couch,

cupboard and door). As main sensor modality stereovision

has been chosen as it provides both 2D data (e.g., for colour

1http://robots-at-home.acin.tuwien.ac.at/

segmentation, shape-based approaches) as well as 3D data

(distances of objects, geometry of the scene).

This paper proposes a method for segmenting indoor scenes

into ground and objects based on stereo data in real-time. Since

stereovision allows to detect the three-dimensional structure of

the environment, better obstacle detection (especially protrud-

ing surfaces such as table tops) is possible. Furthermore, iso-

lated 3D point clouds stemming from single-standing disparity

clusters can serve as input for object classification.

The rest of the paper is structured as follows: in section

II we discuss related work. Section III provides an overview

of our approach and section IV describes the test setup and

shows results.

II. RELATED WORK

The literature proposes several approaches for finding planes

in stereo data and in real-time. The RANSAC method [1]

searches for parameters of the plane with the largest number

of supporting 3D points (calculated from disparity images).

Konolige et al. use this approach to detect the ground in

outdoor scenes [2]. In [3] Yu et al. apply RANSAC to fit

a plane directly in the disparity domain. Although RANSAC

is robust against outliers, it will produce undesired results if

the ground is not the dominant feature, especially in cluttered

indoor scenes. In [4] Labayrade et al. propose the concept of

”v-disparity” that has gained popularity in the driving safety

assistance system community. For each disparity image row, a

histogram over the disparities is built. Given that the camera

baseline is parallel to the ground plane, each row’s histogram

shows a distinct peak. The peaks of all rows lie on a straight

line that can be detected using e.g. the Hough transform. If

the longitudinal profile of the ground is not flat, the inital

straight line breaks up into several connected line segments.

Problematic are roll of the camera as well as clutter since the

distinct histogram peaks disappear. A number of modifications

and extensions of the initial concept have been proposed [5]–

[8]. In [9] Burschka et al. present a method that is similar

to both the v-disparity approach and ours. It selects points

for ground plane estimation via the histogram peaks over ten

selected rows in the lower part of the image and they also

apply constraints derived from the geometry of the setup to

identify outliers.



(a) Left rectified camera image

(b) Disparity image

(c) Filtered image (d) Labelled image

Fig. 1. The two top images show the left rectified camera image and the
disparity image. The left lower image is the output of the first stage of our
approach. The right lower image is the result of the labelling process (ground
gray, objects white)

III. APPROACH

A. De-noising and data reduction

The disparity values of pixels within small neighbour-

hoods that correspond to planar patches such as the ground

plane should lie within a very narrow interval. However,

measurement noise, missing or wrong matches make local

considerations difficult.

To mitigate this problem, we build histograms over the

disparity values in neighbourhoods of n∗n pixels (in our case

n = 4). In parallel to the normal histogram we use a second

one, whose bins serve as accumulators for the disparity values

that voted for a certain bin including subpixel resolution. Using

a sliding window in which the sum of the bins’ vote counts is

calculated, we scan through the histogram in order to find

the maximum. The sliding window is two bins wide, the

scanning starts at the minimum disparity value. To be accepted,

a maximum must have got at least n votes. Then, the average

disparity of the pixels that contributed to the maximum is

calculated. The result is an images whose pixels are assigned

the average disparity of the respective peaks (Fig. 1c). It has

(far) less noise and wrong matches than the original image.

The width and height of this image are 1
n of the original image,

which means a considerable reduction of data that has to be

evaluated.
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Fig. 2. Geometry of the setup and camera coordinate system. x points in the
viewing direction of the camera, y is parallel to the robot’s coordinate system
y-axis that lies on the line connecting the drive wheel centers

B. Selection of ground plane candidates

The stereo camera is mounted on top of the robot and tilted

downwards, so that the lower portion of the camera image

covers the immediate space in front of the robot. Since one of

the tasks of the robot is obstacle avoidance, there is a good

chance that the ground is at least partially visible. However,

we cannot blindly rely on that. Based on the geometry and

the kinematics of our setup (Fig. 2), the pose of the ground

plane with respect to the camera coordinate system can be

calculated. The plane is represented by its normal vector

�n =

⎛
⎝
cos(ρ)sin(θ + γ)

−sin(ρ)
cos(ρ)cos(θ + γ)

⎞
⎠ (1)

and one point on that plane

�P =

⎛
⎝
−(zdsin(γ)− xdcos(γ) + rwsin(θ + γ))

yd
−(zdcos(ρ) + xdsin(ρ) + rwcos(θ + γ))

⎞
⎠ (2)

with

yd = ydl for ρ ≥ 0, yd = −ydr for ρ < 0 (3)

γ is the angle by which the camera is tilted towards the

ground, θ and ρ are the (dynamic) pitch and roll angle of the

mobile robot. rw is the radius of the robot’s drive wheels, xd

and zd are the displacements of the camera center with respect

to the odometry center and yd is the displacement with respect

to the left (ρ ≥ 0) or right (ρ < 0) drive wheel center.

Through each pixel (u, v) of the rectified left image (or

equivalently the disparity image) we can send out a visual

line

�x(u, v) =

⎛
⎜⎝

μ(u, v)− f
μ(u, v) cx−u

fx

μ(u, v)
cy−v
fy

⎞
⎟⎠ (4)

and intersect it with the model of the ground plane. This

yields



μ(u, v) = (xdsin(θ)−zdcos(θ)−rw+fsin(θ+γ))cos(ρ)−ydsin(ρ)

(sin(θ+γ)+
cy−v

fy
cos(θ+γ))cos(ρ)− cx−u

fx
sin(ρ)

(5)

Finally, we calculate the disparity of the pixel (u, v):

dSubpixel(u, v) =
Bfx2

Subpixel

μ(u, v)− f
(6)

B is the baseline of the stereo camera and f the focal length

of its lenses. cx and cy are the pixel coordinates of the principal

point, fx and fy is the focal length divided by the pixel pitch

in horizontal and vertical direction, respectively.

By setting θ and ρ in (5) to the maximally allowed negative

and positive pitch and roll angle of the robot while moving,

and using (6), we can calculate a disparity interval for each

pixel corresponding to the ground plane. In our approach, we

only (pre-)calculate such intervals for the bottom-most pixel

row once during system startup.

The bottom-most pixels of the disparity image described in

the previous section are Hough-transformed, but only those

that lie within said interval. The rest of the pixels that

correspond to clutter are not regarded, which prevents the

Hough-transform from producing meaningless results if the

ground plane is not dominant within the image. If there are

too few ground pixels, we fall back to the (static) offline

calibration.

Based on the result of the Hough transform, the bottom-

most pixels belonging to the ground plane are labelled. Then,

from each such pixel we scan upwards in the respective

pixel column, further labelling pixels whose disparity values

monotonously decrease at a certain rate. This local processing

makes only sense due to the initial de-noising step.

C. Ground plane parameters and ground labelling

A plane in 3D corresponds to a plane in the disparity

domain. Thus, the labelled pixels are part of a plane aũ +
bṽ + c = dSubpixel, where ũ and ṽ are the pixel coordinates

of the reduced resolution disparity image and dSubpixel is the

disparity value (in subpixels) at (ũ, ṽ). The parameters a, b
and c are determined via a least squares plane fit. We select

three non-collinear points on that plane, and using

⎛
⎝
x
y
z

⎞
⎠ = x

⎛
⎜⎝

1
cx−ũ
fx

cy−ṽ
fy

⎞
⎟⎠ (7)

with

x =
Bfx2

Subpixel

dSubpixel
(8)

we calculate the corresponding 3D points. Based on these

three points we calculate the normal vector as well as the

normal distance of the camera center from the plane. The plane

in disparity domain is used to label the rest of the ground

within the low resolution image. a, b, c and dSubpixel are

adjusted for the full resolution disparity image, and there the

pixels belonging to the ground are removed. We do this quite

conservatively as not to cut away too much from the objects.

The scattered ground points that remain are removed by using

the labelled image as mask (one labelled pixel for n∗n pixels).

D. Obstacle point computation

Using the results of the previous section, the non-ground

pixels of the reduced resolution disparity image are trans-

formed into 3D points within the robot coordinate system. The

x-axis (pointing into the robot’s motion direction) is divided

into cells of 5cm, the maximum x-coordinate considered is

5m. For each cell exists a linked list. For each pixel column

the respective 3D points are added to one of these linked lists

if their x-coordinate falls into the respective cell. The cells

are scanned through (starting at x = 0) and the first cell

(for each pixel column) with at least two points in a height

dangerous for the robot is selected. Within this cell the point

with the smallest x-coordinate is selected as 2D representative

for the respective pixel column (the z-coordinate is skipped).

All points together form a ”virtual laser scan” (Fig. 4a). As

stated in the introduction, the 2D representation is compatible

to current mobile robotics’ obstacle avoidance algorithms.

IV. TEST SETUP AND RESULTS

A. Test Setup

The custom-built stereo camera consists of two

monochrome USB UI-1226LE2 camera modules. The

baseline is 12cm and the focal length of the S-mount lenses

is 2.5mm. The modules’ native resolution is 720x480 pixels,

after rectification a resolution of 586x295 pixels remains. A

third module (Bayer pattern) is located half way between the

monochrome cameras but was not used in our experiments.

The stereo engine was developed by the Safety and Security

Department3 of the Austrian Institute of Technology. It is

based on the Census Transform [10]. In our experiments

we used a maximum disparity of 80 with 16 subpixels per

disparity. To reduce false matches in regions with little or

highly repetitive texture, the stereo engine allows to set texture

and confidence thresholds (8 bits each). We used the default

values of 30 for confidence and 10 for texture.

Our differential-drive robot (Fig. 3) was manufactured by

the Swiss company BlueBotics4. A superstructure made of

aluminum profiles as well as an additional on-board PC were

mounted onto the robot. The stereo camera is mounted in a

height of 132cm above the ground and tilted downwards 32

degrees.

B. Results

Our approach was tested on a notebook with Core Duo

T2250 (1.73GHz) of which only one core (single-threaded)

was used. Computation of the reduced resolution disparity

image takes 4ms on average. The Hough transform, scanning

for the initial ground point candidates, the least squares plane

fit, determination of the 3D plane parameters and the final

2http://www.ids-imaging.de
3http://www.smart-systems.at/
4http://www.bluebotics.ch/



Fig. 3. Mobile robot with the stereo camera mounted on top

(a) Virtual laser scan

(b) Ground plane removed

Fig. 4. Processing results intended as input for obstacle avoidance and object
classification

labelling of the reduced resolution image take 1ms. Calculation

of the 3D points from the reduced disparity image, their de-

rotation and the obstacle point computation take 2ms. This

means that after around 7ms the input for obstacle avoidance

can be provided. Removing the ground plane from the full

resultion disparity image takes an additional 4ms.

Fig. 4 shows the results for the scene depicted in Fig. 1. In

the upper image the virtual laser scan is overlayed onto the left

rectified camera image. Fig. 4b and Fig. 5d show that result

of removing the ground plane in the full resolution disparity

images.
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(a) Left rectified image

(b) Filtered image (c) Labelled image

(d) Ground plane removed

Fig. 5. Processing result intended as input for object classification
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