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Abstract—Dependable 3D perception modules are essential
for safe operation of robotic platforms. Furthermore, robot
navigation and localization as well as object recognition tasks
also require processing 2D color camera images. This information
could be synchronously delivered by stereo vision sensors with
the 3D information automatically mapped onto the 2D camera
image. However, embedded real-time stereo vision sensors are
often restricted to grayscale images due to limited computational
resources. Therefore, we present how a previously designed real-
time stereo matching algorithm, the SAD-IGMCT, can be opti-
mized for the RGB and HSV color spaces, further reducing the
algorithm’s complexity, while still allowing for a high accuracy.

I. INTRODUCTION

For safe operation in uncontrolled environments of robot
platforms, dependable 3D perception modules are needed for
a reliable description of the surrounding area. Such 3D sensors
have to be embedded because processing power is limited on
robot platforms and thus should not be additionally stressed
with 3D data calculation. Beside that, the 3D perception has
to be capable for real-time systems which means that the
processing has to be fast and the processing time has to be
known and scene independent. Commonly used embedded
real-time 3D sensors for mobile robots are laser range finders
or laser scanners (LIDAR, light detection and ranging) and
time-of-flight (TOF) cameras. Both have the advantage of
delivering accurate 3D data, but suffer from low resolution.
A promising alternative for robot navigation and mapping is
stereo vision. In contrast to time-of-flight and laser, stereo
vision delivers 3D information and camera images of the
captured environment synchronously. This makes it very well
suited for robot applications because the camera images can
be additionally used for other tasks such as scene classifica-
tion. State-of-the-art embedded real-time stereo sensors use
grayscale cameras for processing because the image quality,
in terms of resolution, noise and sharpness, is better than for
Bayer patterned color cameras. Additionally, when using color
as matching criterion, the algorithm complexity increases in
comparison to using grayscale only. A well known embedded
stereo vision sensor is the Small Vision System from Videre
Design [9]. It uses Sum of Absolute Differences (SAD) as
matching algorithm and a Field Programmable Gate Array
(FPGA) as purely embedded processing platform. Another
SAD-based stereo sensor is the Mobile Ranger [1] from Mo-
bile Robots Inc. It uses a PCI board, equipped with an FPGA

for stereo processing. A different stereo matching algorithm is
used by the DeepSeaG2 processor from Tyzx Inc. [10], [11].
It is based on the non-parametric Census (in detail described
later on) transform [12] and uses a special stereo processor
chip for the matching task.

However, color information is essential for other computer
vision tasks on robot platforms such as segmentation for object
recognition or scene classification, even if recent works put the
achievable gain in accuracy into perspective [3], [6]. In this
paper, we show how an embedded and real-time capable stereo
matching algorithm, introduced in a previous work [2], can be
optimized for the use on RGB and HSV color spaces, while
keeping the algorithmic complexity low.

II. ABSOLUTE DIFFERENCE AND GRADIENT-BASED
MODIFIED CENSUS TRANSFORM

The Census transform [12], is a non-parametric algorithm
with a high robustness to illumination variations. The Census
transform consists of a comparison function ξ, which is used
to compare the center pixel’s intensity value i1 with the pixel
intensity values i2 in the neighborhood region, i.e. a block
with the dimensions st × st.

ξ(i1, i2) =

{
1 | i1 > i2
0 | i1 ≤ i2

(1)

Its result is then concatenated (
⊗

) to a bit vector. Thus, the
transformation function Tcensus is defined as

Tcensus(I, x, y, st) =
⊗
[n,m]

ξ[I(x, y), I(x+ n, x+m)] (2)

where
n,m ε [−st − 1

2
,
st − 1

2
]. (3)

For the cost function, the Hamming distance is calculated
over the bit vectors. Since we are working on color images,
we compute each color channel separately and aggregate the
matching costs before the cost selection.

As revealed in [2], using the original Census transform on
gradient images does not allow for an increase in accuracy,
because it is not able to handle blocks with a saturated center
pixel. Therefore, to allow the extension of the Census trans-
form to gradient images, it is necessary to use the Modified
Census Transform (MCT) [4], where the center pixel in the



transform is replaced by the mean value, which is calculated
over the whole block. Since using MCT on the gradient
images additionally to the original one triples the algorithm’s
complexity, we are using a so called sparse computation for
the Hamming distance, where only every fourth bit within the
bit-vector is used. This way, the overall complexity can be
reduced, while the drop in accuracy is at a minimum level.

For the computation of the MCT on the gradient images, we
compute the Sobel filtered images for each color channel in x
and y direction. Then, we are aggregating the matching costs
over an image region with block size sa × sa. Thus, the total
block size sb for the stereo matching algorithms is defined as
sb = st + sa.

Since the MCT is a non-parametric algorithm we also
compute the absolute difference of the blocks’ center pixels,
to introduce a small parametric measure as well. For a detailed
analysis on the absolute difference and gradient-based MCT,
called SAD-IGMCT in the following, as well as the sparse
computation of the Hamming distance, see [2].

This algorithm consists of three sub-algorithms: the MCT on
the intensity images, the MCT on the gradient images, and the
absolute difference of the blocks’ center pixels. The matching
costs for these three algorithms are aggregated after applying
a weighting factor to the MCT on the gradient images (Wgrad)
and the absolute differences (Wad). Finally, the matching costs
for all color channels are aggregated.

Now, the most accurate matching costs have to be searched
for. Their position defines the resulting disparity map’s pixel
value dmapx,y . Here, we are using the Winner Takes All
(WTA) algorithm, due to its small complexity which suits real-
time implementations very well.

For the sub-pixel refinement it is necessary to interpolate
the resulting matching costs from the stereo matching, refining
the position of the absolute minimum to values that can be in
between two pixels. In this work, parabola fitting [8] is used
as described in equation 4.

d̂map =
ax,y,dmap−1 − ax,y,dmap+1

2ax,y,dmap−1 − 4ax,y,dmap + 2ax,y,dmap−1
(4)

Due to the cameras’ different viewpoints it can occur that
some regions that are visible by one camera, are occluded in
the other camera’s perspective. For these image areas, it is
not possible to find a correlation, and therefore the disparity
values for these areas cannot be correct. Thus, it increases the
quality of the disparity map, if all matches within occluded
areas are removed.

The left/right consistency check [5] takes the disparity
map having the left camera image as the primary image and
compares it to the one having the right camera image as
primary, or vice versa. If the disparity maps’ values have too
high deviances for the same object point they are disregarded.
This way wrong matches are detected and removed. Here, we
are using a maximum deviation of just 0.5 pixels. This way,
the left/right consistency check not only removes mismatched
areas but also most of the incorrect matched surfaces.

In this work, we are not using further post-processing,
such as the interpolation of mismatched or occluded regions,
because we are focusing on the optimization of the stereo
matching algorithm’s accuracy and extensive post-processing
might lead to misleading results.

III. ALGORITHMIC OPTIMIZATIONS FOR RGB AND HSV
COLOR SPACES

When using color images for stereo vision, the algorithm’s
complexity is multiplied with the number of color chan-
nels used. However, real-time implementations have limited
computational resources. Hence, a stereo matching algorithm
suitable for embedded real-time systems must have a low
computational complexity. Therefore, we analyzed how the
complexity of the stereo matching algorithm can be reduced,
while allowing only for a minor drop in accuracy.

To discuss this analysis and the impact on the stereo match-
ing algorithm, we are using the Tsukuba stereo images [7] as
depicted in figure 1 from the Middlebury dataset. We chose
this dataset, since it presents a typical scene for a domestic
robot. Furthermore, in difference to other stereo image pairs
in the Middlebury Ranking, it does not have colors with high
contrast and can therefore assumed to be rather challenging
for color stereo vision.

In this work we are using st = 15 and sa = 5 for further
analysis. These block sizes proved to enable a good accuracy
on the Middlebury dataset as well as on real world images,
captured with industrial cameras. Thus, we chose this block
size even if the Tsukuba images would encourage the use of
very large block sizes. Since it would not be useful to discuss
this analysis based on a block size suiting one image pair only,
we use this generic configuration.

(a) (b)

(c)

Fig. 1. Tsukuba dataset: (a) left image; (b) right image; (c) ground truth.

A. RGB Color Space

For the RGB color space we analyzed the optimum pa-
rameters for the SAD-IGMCT. Here, we used a parameter
variation for the gradient weight Wgrad from 0 to 10 with step



size 1 and for the absolute differences we varied Wad from
0 to 50 with step size 10. The results are very interesting,
as the best accuracy was achieved using Wgrad = 10 and
Wad = 50. Here, the number of pixels within 0.5 pixel
deviation are 64.48%. While our previous works on gray scale
images resulted in rather average weighting for the gray scale
and gradient images, the results on the RGB images are quite
different.

Figure 2 presents the algorithm’s accuracy for the SAD-
IGMCT where Wad = 0, i.e., without the computation of
the center pixels’ absolute differences. The results show, that
the accuracy is highly increasing with the gradient weight
and with an accuracy of 64.24% the result for Wgrad = 10
and Wad = 0 is 0.24% slightly lower than for Wad = 50.
Furthermore, it also shows the impact of the gradient images,
as the computation of the original RGB channels only, i.e.,
with Wgrad = 0 and Wad = 0, only allows for an accuracy
of 55.47%.
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Fig. 2. Accuracy of the SAD-IGMCT on RGB images depending on the
gradient weight Wgrad, with Wad = 0.

Hence, we performed the stereo matching on the gradient
images of the RGB channels only, varying just the weight for
the absolute difference Wad from 0 to 200 having step size
10. The results are depicted in figure 3. Here, the accuracy for
Wad = 0 is with 64.24% nearly exactly the same as Wgrad =
10 and Wad = 0 when the original RGB channels are included
in the computation. The best overall accuracy can be achieved
having Wad = 10 leading to 64.73% correct matches.

However, when considering the limited resources of embed-
ded real-time system, this tiny increase in accuracy does not
compensate the computational resources required for the com-
putation of the absolute differences. Thus, it can be assumed
that the ideal configuration for using the Census transform
on RGB color images is the computation of the MCT on
the gradient of the color channels in x and y direction. The
disparity image resulting from this configuration is presented
in figure 4.

B. HSV Color Space

While we were required to treat all color channels of the
RGB color space equally to ensure a generic result that is
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Fig. 3. Accuracy of the SAD-IGMCT the RGB gradient images only,
depending on the absolute differences weight Wad.

Fig. 4. Disparity calculated for the Tsukuba image set using the gradient of
RGB color channels only.

Hue Saturation Value
Wgrad Wad Wgrad Wad Wgrad Wad

0 0 3 0 10 50

TABLE I
OPTIMIZED VALUES FOR THE SAD-IGMCT ON THE HSV COLOR SPACE.

not depending on the dedicated color values appearing in our
test image, we analyzed the channels of the HSV color space
separately. Here, we varied Wgrad from 0 to 10 with step size
1 and Wad from 0 to 50 with step size 10 for all three channels
of the HSV color space, computing 287496 samples. The best
result in this color space was 63.06%, with the parameters
presented in table I.

Based on these results, we selected the gradient of the satu-
ration channel as well as the gradient and absolute differences
of the value channel as the dominant ones for the matching
performance. Thus, we performed the computation on these
values only, i.e., setting Wgrad = 1 for the saturation channel
and varying Wgrad from 0 to 10 for the value channel, leading
to the results depicted in figure 5. Here, the best result is
63.21% correct matches when using Wgrad = 3 for the value
channel. The disparity map resulting from this configuration
is presented in figure 4.

The accuracy depending on the weight of the absolute
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Fig. 5. Accuracy of the SAD-IGMCT on the gradient of the saturation and
value channels only, with different Wgrad for the value channel.

Fig. 6. Disparity calculated for the Tsukuba image set using only the gradient
of the saturation having Wgrad = 1 and value channel having Wgrad = 1.

difference Wad on the value channel is presented in figure
7. Here the best result is 63.49% which is once again only
slightly better than the results without absolute difference.
Hence, reducing the SAD-IGMCT to the MCT on the gradient
images of the saturation and value channels of the HSV color
space results in nearly exactly the same accuracy, leading to
a highly reduced complexity.
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Fig. 7. Accuracy of the SAD-IGMCT on the gradient of the saturation having
Wgrad = 1, gradient of the value channel having Wgrad = 3, and different
Wad for the value channel.

IV. CONCLUSIONS AND FUTURE WORK

Our analysis on the SAD-IGMCT on the RGB and HSV
color space revealed that in difference to grayscale images
the algorithm can be reduced to matching the gradient of
specific channels only. For the RGB channel, the best results
can be expected when using the gradient values of all three
color channels, while the HSV allows for a reduction to the
saturation and value channels only. Even if the HSV color
space requires matching of two channel gradients only, the
RGB color space resulted in a slightly better accuracy.

Even if the Tsukuba image is a very good stereo set when
focusing on real-time stereo vision for domestic robots, this
is only a first step towards a generic analysis on Census-
based stereo vision on color images. Thus, we will extend
our work on evaluating the optimum parameters for the whole
Middlebury dataset, containing multiple stereo image pairs
with highly contrasted colors. However, even if the behavior
of stereo matching algorithms on images with colors that are
rich in contrast is very interesting, a stereo vision system
designed for robotics applications will be required to handle
both, images with highly and poor contrasted color. Thus, we
do not expect the parameters for the final stereo system to be
based mainly on image sets without strong color such as the
Tsukuba images.
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