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Abstract. This paper proposes a discriminative object class detection and recog-
nition based on spatial configuration of local shape features. We show how sim-
ple, redundant edge based features overcome the problem of edge fragmentation
while the efficient use of geometrically related feature pairs allows us to construct
a robust object shape matcher, invariant to translation, scale and rotation. These
prerequisites are used for weakly supervised learning of object models as well
as object class detection. The object models employing pairwise combination of
redundant shape features exhibit remarkably accurate localization of similar ob-
jects even in the presence of clutter and moderate view point changes which is
further exploited for model building, object detection and recognition.

1 Introduction

The study of shape for object description and recognition has a long research tradi-
tion, dating back into the early days of the computer vision field. Several recent works
have explored the idea of coupling local, contour-based features together with their ge-
ometric relations as effective means of discriminating object categories using shape.
Promising results in the context of object class recognition and object localization have
been achieved, solely operating on boundary-based representations. In [12,10] code-
books of class discriminative shape features, drawn from a corpus of training images,
are augmented with geometric relations encoded in pointers to an object instances cen-
troid. A similar representation was suggested by Ferrari et al. [5], however building
on a more generic alphabet of shape features, derived from groups of adjacent contour
segments. In contrast, [9,3] model global shape by means of ensembles of pairwise
relations between local contour features.

In our work we exploit pairwise relationships between local shape fragments to con-
struct a robust shape matching technique that is invariant to translation, scale and ro-
tation. This method allows us to localize objects in the scene using the model based
on spatial arrangement of local shape fragments discussed in Section 3. The use of this
technique for model extraction as well as object detection and classification is investi-
gated in Sections 4 and 5.
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2 The Shape Based Object Model

In this work, an object’s shape is represented by an overcomplete set of weak local fea-
tures together with their spatial relations: Local, edge-based features are embedded in a
global geometric shape model, organized as a star-like configuration around an object’s
centroid. The aspects of this type of representation has been extensively investigated
in the context of part-based object class recognition [11,4], showing the advantage of
considerably reduced computational burden during training and testing compared to
fully connected constellation models. Star-like representations also found successful
application in contour-based object detection methods: Opelt et al. [10] and Shotton
et al. [12] concentrated on the use of class-discriminative codebooks of boundary frag-
ments, while Ferrari et al. [5] employ a generic alphabet of shape features, derived from
groups of adjacent contour segments.

To further increase the explanatory power of the rather weak features, we group
them into pairs and exploit their pairwise constraints and their geometric relationship
to the centroid to arrive at an efficient matching process which is invariant to changes
in translation, scale, and orientation while still being able to handle moderate shape
deformations. Ensembles of pairwise relations between edge-based features have been
previously used in the same context by [9]. However, the proposed encoding only al-
lowed for translational invariance during the matching process.

3 Features and Matching

Our choice of shape features is based on two criteria: Achieving invariance to transla-
tion, scaling and rotation and minimizing the sensitivity w.r.t. edge fragmentation. We
start with edges obtained by Canny’s edge detector and then coarsely segment each
edge into a chain of straight segments by splitting at high curvature points (see Fig-
ure 1). Similar in spirit to [5], these edge fragments are used to construct a basic feature
that represent local contours in the form of a pair of adjacent segments and the key point
at the segment intersection. Segment adjacency is defined in terms of overall distance
from the key point to the associated segment boundaries (referred later as “relaxed seg-
ment adjacency”) – thus allowing pairing of segments that correspond to different edges
or non-consecutive segments along the same edge. Although this is a very weak feature
that does not allow for reliable scale and orientation estimation, the negative effect of
edge fragmentation is compensated by relaxed segment adjacency and the introduced
redundancy.

In order to create a feature that is fully invariant to similarity transformation and
increase its discriminative power we pair individual key points as shown in Figure 1
(lower-right corner). The key point pair is described by two sets of parameters:

– matching features fij = [βij1, βij2, βij1, βij2] ∈ F
4 where F represents real numbers

in the range −π..π that describe segment angles relative to the vector connecting key
points i and j. Note that fij is invariant to similarity transformations.

– geometrical relationships used for estimation of relative scale, orientation and object
centroid location during feature matching gij = [dij , αij , Δxij , Δyij , Δxic, Δyic].
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The Δxic and Δyic represent spatial relation between i − th key point and the ob-
ject centroid c. Object centroid is either known (model) or estimated during object
detection.

Note that such defined feature pair is an ordered set of key points i and j.
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Fig. 1. Left: Example of local shape features. Green lines and white markers depict edge segments
and the associated key points respectively. The lower-left corner shows an example of key point
association to segments belonging to different edges or non-consecutive segments along the same
edge. The lower-right corner shows an example of key point pair. Right: Example of feature
discretization (2D case for clarity) that allows for matching of feature sub-sets instead of exostive
correspondence estimation (see Section 3.1).

Geometrical relations between local image features have been previously used to
disambiguate feature correspondences in object recognition, see Section 2. Here we
extend the use of feature pairs (referred as features from now on) to obtain feature
matching, registration and object detection that is invariant to translation, scale and
orientation.

The problem of feature matching and subsequently fitting the object model m to the
feature set from target image t is defined as a three stage process:

1. Feature matching that estimates feature similarity, relative scale and orientation be-
tween the model and the target sets as well as the centroid position in the target
image. Feature matching also produces soft correspondences between model and
target features, where each feature in the model set correspond to k most simi-
lar target features. We have chosen k = 20 which gives a good balance between
accuracy and efficiency of the model fitting.

2. Estimation of potential centroid locations in the target image with Hough-style vot-
ing.

3. Iterative model fitting around detected centroids combined with feature correspon-
dence pruning. The model fitting establishes relative scale and orientation between
uniquely corresponding features that minimizes global fitting error.
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3.1 Feature Matching

The feature matching between model and target sets involves estimation of similarity
between key point pairs in the compared features, estimation of relative scale, orien-
tation as well as centroid location for the target features. The dissimilarity between
feature p, corresponding to key point pairs ij, from the model set m and feature q, cor-
responding to key point pairs i′j′, from the target set t is obtained by comparing fm,p

and ft,q:
εf (p, q) = (|fm,p − ft,q| mod π) (1)

The relative scale and orientation are given by ζp,q=dp/dq and ωp,q =((αp−αq)mod π)
respectively. Note that because of using key point pairs the relative scale and orientation
are non-ambiguous. The estimation of centroid location in the target image is given by:

xct(p, q) =
(

Δxic(ΔxpΔxq + ΔypΔyq)+

Δyic(ΔypΔxq − ΔxpΔyq)
)
/d2

p + xi′

yct(p, q) =
(

Δxic(ΔxpΔyq − ΔypΔxq)+

Δyic(ΔxpΔxq + ΔypΔyq)
)
/d2

p + yi′

(2)

where xi′ and yi′ correspond to the position of the first key point in the feature q.
The negative aspect of using feature pairs is higher computational complexity. In a

typical case feature matching would compare all possible combinations of features in
two feature sets – if the model and target sets contain K = 1000 key points each1 the
matching procedure has to compare (K2 −K)× (K2 −K) ≈ 1012 pair combinations
which corresponds to quadratic complexity and leads to prohibitively high execution
times. However, due to the simplicity of the feature descriptor we can partition features
into a 4D array F representing a discrete space of F

4. Each cell of the array F contains
a sub-set of features corresponding to the cell span in F

4, thus the matching of features
in a single cell of the array Fm (model features) is confined only to the same cell in the
array Ft (target features) and adjacent cells as shown in Figure 1. The cell span cs de-
fines the similarity threshold at which relative segment angles are no longer compared.
We have chosen a conservative value of cs = 30◦ which allows maximum angle differ-
ence between two segments of 45◦ and produces 124 cells in the array. The efficiency
benefit of this solution depends on the particular distribution of features in Fm,t spaces
e.g. when features are distributed uniformly the speed up factor equals to 1

3124. Typical
matching times range from below a second (K = 200) to about 30 seconds (K = 1000
- complex scenes) on a 3GHz multi-core processor (which can be further improved by
using GPU)2.

The feature matching produces a set of soft correspondences, allowing association
between a single model feature and k target features, which is a necessary measure to
account for feature ambiguity and presence of multiple similar objects in the scene. The
feature correspondences produce a centroid estimates according to (2) which are accu-
mulated to generate hypotheses about the object location in the analyzed scene using a

1 The images in the tested databases produce between 200 and 1000 key points.
2 For simplicity we assumed that model and target have identical number of key points.
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Fig. 2. The top row shows locations of estimated centroids in the target image (right image) given
the model obtained from the features enclosed by the bounding box (left image). Despite the
noisy model that contains also elements of the background, significant edge fragmentation and the
differences in appearance (textures resulting in additional clutter) the strongest voting maximum
is closely aligned with the true location of the object centroid. The bottom row shows accumulator
arrays and voting maxima tracking across different resolutions. Images are best viewed in color.

Fig. 3. Example of the object localisation by matching and fitting a noisy model (contents of the
bounding box in the left image). The second image shows the features extracted from the target
image and the estimated location of the object centroid (strongest voting maximum). The right
figure shows the alignment of the model (green, thick lines) with the uniquely corresponding
features in the target image (red, thin lines). Note the amount of clutter in the target image.

Hough-like voting scheme [2]. The spread of the accumulated centroid votes depends
on factors such as the amount of clutter present, overall shape similarity between model
and target objects, and the relative scale at which features have been extracted [7]. Since
this cannot be established a-priori, we adopt a simple multi-resolution refinement step,
searching for voting maxima which are stable across different levels of granularity of
the accumulator array as shown in Figure 2.

3.2 Model Fitting

Depending on the allowable degrees of freedom (e.g., rigid and non-rigid deforma-
tions), finding correspondences between model and image features often poses a costly
combinatorial problem which gets quickly out of hands for more than a rather moderate
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number of features involved. Typically, efficient strategies for searching less then opti-
mal matching solutions are adopted to make the problem more tractable. Among those,
approaches based on Integer Quadratic Programming [3], graph cuts [13], and spectral
matching [8] have been shown to give excellent results in the context of object class
recognition.

However, despite their efficiency, the number of features that can be coped with is
limited to few hundred. Since our approach operates on a large number of feature pairs,
the amount of initial pair correspondences to be optimized requires a more efficient ap-
proach. E.g. for K = 1000 model key points and k = 20 correspondences per key point
pair we obtain up to (K2 − K) × k ≈ 20 × 106 soft correspondences, unfortunately
ruling out the use of the aforementioned methods. Therefore, we adopted a more practi-
cally usable and efficient procedure based on iterations of coarse model alignment and
feature pruning.

Specifically, an initial model position is obtained from the estimated centroid, while
relative scale and orientation are estimated from the soft feature correspondences that
casted votes for the centroid3. Since the initial estimation of position, scale and ori-
entation cannot be expected to be accurate, it is optimized in an iterative process that
combines model fitting and soft-correspondence pruning until unique correspondences
are found. Here, due to the centroidal alignment, only a moderately sized sub-set of soft
correspondences voting on the centroid has to be processed in subsequent iterations of
the fitting procedure.

The following simplified fitting procedure is repeated for every centroid:

1. Obtain a list of soft correspondences that casted votes for the centroid (the list is
produced during voting for each maximum in the voting accumulator at lowest
resolution) C = [(p1, q1), (p2, q2), ..., (pM , qM )], where (pm, qm) are indexes of
corresponding pairs in the model and target sets respectively. The correspondences
are weighted (wm) inversely proportional to the distance between their vote and the
position of maximum in the voting accumulator.

2. Estimate scale ς and orientation ω of model relative to the corresponding target
features:

ς =
1∑

M wm
exp

(∑
M

wm log
(

d(qm)
d(pm)

))
(3)

where d(pm) and d(qm) are spatial distances between key point pairs p and q re-
spectively.

ω =
1∑

M wm

∑
M

wm ((αq − αp) mod π) (4)

3. Transform the model: scale by the factor ς, rotate by ω and translate to the target
centroid.

4. Estimate a similarity score sp,q for corresponding features that is a combination of
spatial misalignment εs(p, q) and feature similarity εf (p, q):

s(p, q) = exp

(
− (εs(p, q) + ςσsεf(p, q))2

2 (ςσs)
2

)
(5)

3 The fitting is repeated for each centroid detected in the target image.
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where εs(p, q) is an Euclidean distance between transformed model key points and
target key points in the corresponding features and σs is a parameter which binds
spatial and angular alignment errors. Proposed measure produces similarity score
1 for perfectly aligned features (εs(p, q) = 0 and εf (p, q) = 0) and approaches 0
when εs(p, q) >> σs or εf(p, q) → 2π. All results presented in this paper were
achieved with σs set to 0.1 of the maximum model extent (bounding box) although
our experiments has shown that range between 0.05 and 0.2 produces almost iden-
tical fitting results.

5. Find all model features pr that correspond to more than one target feature and for
each feature pr discard a correspondence that produced minimum similarity score.

6. Return to step 2 if any of the model features correspond to multiple target features.

Examples of feature matching and model fitting are shown in Figure 4.

4 Model Extraction

Our primary concern is the construction of object class model that contains a suffi-
cient number of discriminative and repeatable features to maximize accuracy of object
detection and classification.

In [10] and [12] the initial set of training features is reduced using a simple clustering
technique and the discriminative features are selected by a training stage based on Ad-
aBoost. Our approach follows this scheme. However, instead of initial feature reduction
we produce a set of “sub-models” that represent groups of geometrically similar object
instances in the training data set. The aim of sub-models is to capture a distinctive shape
variations within the whole training set in terms of overall shape similarity and centroid
localisation accuracy (see Figure 5). Such partitioning allows as to a) build more spe-
cific object models that increase fitting accuracy, b) minimize matching complexity and
c) obtain more accurate feature alignment than it is possible with ordinary clustering
approach.

The extraction of sub-models is a pre-processing step before the learning discrimina-
tive model, meant as a coarse data partitioning. The purpose of sub-models is to obtain
a compact feature set from similar object instances and ensure that each sub-model
preserves geometrical characteristics of represented shape. The sub-model extraction
procedure consist of object instance grouping and feature compacting as follows:

1. Grouping starts with matching object instances in the training set, giving an esti-
mate of global shape similarity and centroid estimation accuracy for every matched
pair. The global shape similarity between an instance a and b is an average of fea-
ture similarities (5) obtained from model fitting Sa,b = (

∑
M s(pm, qm))/M (in-

stance a is the model and instance b is the target). Note that these estimates are
asymmetric in general (Sa,b �= Sb,a) due to different number of features in both
instances and potential presence of non-repeatable background inside the bounding
boxes. For that reason a symmetric similarity between two instances is defined as
Ŝa,b = Sa,b + Sb,a.

2. Object instances are grouped using a hierarchical clustering on the global shape sim-
ilarity Ŝ with an additional constraint on maximum allowed centroid error ec(a, b)
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Fig. 4. Examples of object localisation (using noisy models) in the presence of scale, orientation,
view point change and occlusion. The first column contains images of the model (enclosed by the
bounding box) that are matched to the target images in the second column. Estimated centroids
are shown in the target images while the model fitting is visualized in the third column.

and scale estimation error es(a, b). The centroid localisation error is an Euclidean
distance between detected and true positions of the centroid relative to the bound-
ing box of instance b while the scale estimation error compares ς (3) to the relative
scale of bounding boxes in instances a and b. These constraints ensure that object in-
stances with high centroid and scale estimation errors will not be grouped together.
We have used conservative error thresholds ec < 2σs and 0.75 < es < 1.3 (relative
scale) for all evaluated image databases. The centroid and scale accuracy constraints
typically result in 8-12 groups (see Figure 5 as an example).

3. In the final step features are compacted within each group of object instances. Cor-
responding key points from different object instances (exhibiting both feature sim-
ilarity and global spatial alignment) form cliques that are averaged into a single
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Fig. 5. Example of object instance grouping in the training data set based on overall shape similar-
ity, centroid detection and scale estimation accuracy. Each row contains a group of similar object
instances (note the figure is split into two columns). The final result depends on the training data,
intra-class variability and the bounding box background variability. This example shows that it
is possible to obtain meaningful groups of real objects with a low number of outliers. Resulting
sub-models (only a subset is shown for clarity) display a reduced set of features, each visualized
with a gray intensity corresponding to the associated strength.

model key point. A key point clique can be viewed as a connected graph with
key point based nodes and correspondence based edges. The strength of the result-
ing key point is a sum of similarity scores (5) from all correspondences between
merged key points and is used as a weight during casting centroid votes. Examples
of sub-models produced by key point merging are shown in Figure 5.

The outline of our final feature selection and classifier learning is as follows. We com-
bine sub-models into a global set of a spatially related features which will be pruned
during the learning process. The sub-models are matched to the validation images to
obtain a set of positive and negative training examples in terms of similarity and align-
ment of individual features. The role of sub-models is to localise and estimate pose of
similar objects or shape structures in the validation images. The positive and negative
examples however contain similarity scores (5) of every feature in the global model set
that are transformed according to previously estimated pose and centroid location. Pos-
itive examples are obtained whenever one or more sub-models locates the same type
of object in the validation image while negative examples are drawn from other object
types and the background. The final object classifier and feature selection are produced
by applying the Gentle-Boost learner to the set of positive and negative examples.

The Gentle-Boost classifier has a typical form of linear combination of weak classi-
fiers:

H(d) =
∑
M

am

(
s(pm,d, qm,d) > θm

)
+ bm (6)

where am, bm and θm are learned parameters, d indicates a particular centroid/pose
detection (more than one possible per image) while pm,d and qm,d are corresponding
model and target features (model features are transformed). Depending on the training
data sets the typical number of discriminative features selected varied between 300 and
400. The features that were dropped during classifier training are also removed from
sub-models.
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The extraction of training examples plays a critical role in obtaining a robust classi-
fier. These examples must account for inaccuracy in centroid and pose estimation that is
caused by the intra-class shape variability or change of view related to projective trans-
formation. The examples produced by matching of sub-models to the validation images
must be therefore artificially expanded by injecting potential errors into centroid and
pose estimation in a similar manner as in [6,12]. These additional examples are pro-
duced by computing alignment of features and thus similarity measures for displaced
centroid positions and slight scale variations. This procedure produces not only an addi-
tional positive examples (around the true centroid position) but also negative examples
when the model is shifted toward the boundary of the bounding box in the validation
image.

The process of feature selection and classifier training is repeated for every database
separately. The negative examples used for boosting are obtained from the training im-
ages of the trained class (background outside of the bounding box) and training sets of
other classes. This is done to obtain an object class detector that is not only able to dis-
criminate object of particular type from a typical background but also to discriminate it
from other object classes.

5 Evaluation

We test our approach on five databases listed in Table 1 that has been previously used for
evaluation of other shape based detectors. We select a relatively small number of images
(< 10%) for sub-model extraction and another set of images to serve as validation data.
The overall training data set do not exceed 25% of the whole database in each case. Tests
were conducted on the combined set of test images drawn together from all databases.

To evaluate our approach we measure object detection and image classification ac-
curacy for each object class separately. By object detection we understand localisation
and classification of object instances as follows. We use sub-models to produce hy-
potheses d on object location (centroid) as described in Section 3.1 and 3.2. Next, the
classification score H(d) (6) is computed for each hypothesis. We use a simple non-
maxima suppression on |H(d)| to locally eliminate “weak” detections in overlapping
regions (within 50% of the bounding box area). Remaining hypotheses d are classified
as an “object” H(d) > Θ or “background” H(d) � Θ, where Θ is a global confidence
threshold regulating trade off between true and false positives. Resulting classification
is compared against the ground truth to produce statistics on the number of true and
false positives as a function of threshold Θ. A particular detection is associated with
the object class if the area overlap between the detected (scaled) bounding box and
the annotated bounding box is greater than 50% (assuming it contains the same object
type) [1]. For the image classification results, the detection exhibiting the strongest clas-
sification confidence maxd |H(d)| is used to decide whether an instance of the object
class is present in the image or not.

Table 1 provides the image classification and object detection accuracy along with
the receiver operating characteristic (ROC) curve for the image classification case. The
result of our evaluation gives an indication of how well the particular object class is
discriminated against the background and other object classes. This is in our opinion
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Table 1. Classification and detection performance on 5 image databases. The second column
shows the true positive ratio for image classification at equal error rate (EER). Third column
shows the area under ROC curve (ROC-AUC). The fourth column represents the area under
Precision-Recall curve (PR-AUC) for the detection of object instances. Right: The ROC curve
represents image classification accuracy for each of the tested databases, showing a trade off
between true positives and false positives as the global confidence threshold is varied.

database tp
(EER)

ROC-
AUC

PR-
AUC

horses
(Weizmann)

0.970 0.985 0.993

cows
(Darmstadt)

0.966 0.947 0.829

cars
(Darmstadt)

0.956 0.975 0.909

motorbikes
(Caltech)

0.957 0.986 0.993

bikes
(Graz)

0.815 0.867 0.782

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

horses

cows

cars

motorbikes

bikes

0 0.05 0.1 0.15 0.2 0.25
0.75

0.8

0.85

0.9

0.95

1

a more realistic and challenging test scenario than the typical object detection against
background only [12,10].

We benchmark our method against state-of-the-art approach from Shotton et al. [12].
Our approach achieves particularly good performance on the database of horses (PR-
AUC of our method 0.993 vs. 0.968/0.785 in [12]) and bicycles (our 0.782 vs. 0.6959
[12]) considering that they were not split into side/front views as in [12]. Detection
accuracy of motorbikes is almost identical in the two methods. Detection accuracy of
Cows is worse than in [12], however the problem is primarily related to cows being
confused with horses (not done in [12]) as well as imbalance in the number of test
images (5:1) between these two databases.

6 Conclusions

We have presented a novel shape matcher and its application to discriminative object
recognition. The shape matcher efficiently utilizes pairs of local shape fragments for
robust model localisation. Although feature pairs have been previously exploited for
matching and object recognition, we extend their use to provide invariance to rotation
and scale effortlessly. Reported results show that our approach tolerates moderate view
point changes, clutter and partial object occlusion (see Figures 4). Evaluation of object
detection accuracy proves that the method is capable of outperforming state-of-the art
detectors on challenging databases, containing multiple views of the same object class.

Our analysis of the method properties indicates that the combination of redundant
features and the use of feature pairs plays a crucial role in object localisation and pose
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estimation while the use of sub-models (Section 4) significantly improves object de-
tection accuracy. The use of multiple object models per class, feature sharing between
these models and verification of different model extraction approaches is a primary fo-
cus of future work.
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