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Abstract

This paper introduces a new segmentation-based ap-
proach for disparity optimization in stereo vision. The main
contribution is a significant enhancement of the matching
quality at occlusions and textureless areas by segmenting
either the left color image or the calculated texture image.
The local cost calculation is done with a Census-based cor-
relation method and is compared with standard sum of ab-
solute differences. The confidence of a match is measured
and only non-confident or non-textured pixels are estimated
by calculating a disparity plane for the corresponding seg-
ment. The quality of the local optimized matches is in-
creased by a modified Semi-Global Matching (SGM) step
with subpixel accuracy. In contrast to standard SGM, not
the whole image is used for disparity optimization but hor-
izontal stripes of the image. It is shown that this modi-
fication significantly reduces the memory consumption by
nearly constant matching quality and thus enables embed-
ded realization. Using the Middlebury ranking as evalua-
tion criterion, it is shown that the proposed algorithm per-
forms well in comparison to the pure Census correlation.
It reaches a top ten rank if subpixel accuracy is supposed.
Furthermore, the matching quality of the algorithm, espe-
cially of the texture-based plane fitting, is shown on two
real-world scenes where a significant enhancement could
be achieved.

1. Introduction
3D data perception of the surrounding environment of a

robot platform or an autonomous vehicle is essential for re-
liable operation. Common sensors are based on laser, radar,
or time-of-flight. These techniques enable high quality 3D
perception with the drawback of low resolution and high
costs. For a number of robot applications such as people or
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scene recognition as well as robot navigation digital cam-
eras are used. Stereo vision is technology that uses two in
parallel mounted digital cameras to determine the depth of
a scene. Advantages are the low price, the high resolution
and the fact that the images can be used for any other appli-
cation as well. For home applications it is also quite useful
because it is purely passive technology and thus does not
effect the surrounding environment.

For depth calculation the so called correspondence prob-
lem (stereo matching), which is the search for correspond-
ing projections of the same scene point onto both camera
planes, has to be solved. The horizontal displacement of
corresponding pixels is denoted as disparity. Area-based
stereo matching algorithms try to calculate the complete
disparity map, which is an image of the same size as the
camera images with the disparity instead of the intensity
value for each pixel. The advantage is that with a single
capture a huge number of surrounding 3D points can be de-
termined. The matching process is based on similarity com-
parison of areas of the images (correlation), thus textureless
areas are a difficult challenge. Pixels visible in only one of
the images are called occlusions and obviously cannot be
found by correlation.

In general, area-based matching algorithms calculate the
costs for each matching candidate and optimize them af-
terwards to find the correct matches. Once the local costs
are calculated, a minimum search (winner takes all, WTA)
can be used to find the best matching pixels. Another strat-
egy is to apply global optimization to the local costs to en-
hance the probability of correct matching. Here, not only
the pixels’ neighborhoods are used to calculate the costs,
but the whole scanline or even the whole image. With
these techniques, especially on textureless areas better re-
sults can be achieved. The drawback of global optimizing
algorithms is the huge processing time and memory con-
sumption. To the authors’ knowledge, no implementation of
a global optimization is commercially available for purely
embedded real-time platforms without dedicated hardware
such as field programmable gate arrays (FPGA).



The goal of this work is to enhance the matching quality
of local matching approaches by the use of global optimiza-
tion techniques. The challenge is to keep the computational
effort and the memory consumption low to enable embed-
ded and real-time processing.

2. Related Work
Lots of research has been done in stereo vision, thus a

large number of stereo matching approaches exists. A good
comparison of many different stereo matching algorithms
can be found in [14, 4]. Lots of algorithms use a local
costs function such as Sum of Absolute Differences (SAD)
or Sum of Squared Differences (SSD). A good evaluation of
costs functions for stereo matching can be found in the work
of Hirschmueller and Scharstein [10, 11]. Other methods
use the Census transform, introduced by Zabih and Wood-
fill [18], where the costs are calculated using the Hamming
distance of two Census transformed pixels. The Census
transform itself is a non-parametric local transform that uses
intensity differences within a pixel’s neighborhood to deter-
mine a bit string representing that pixel.

Well known global optimization techniques are e.g. Dy-
namic Programming [2, 8], Graph Cuts [13], Belief Prop-
agation [17, 16, 7], or Semi-Global Matching [9, 6]. To
overcome the problem of occlusions, approaches based on
image segmentation [3, 1, 15] came up. The goal is to de-
termine initial disparities for each segment and fit a model
onto them. The model can then be used to refine the dispar-
ities inside the segment with the assumption that all pixels
inside the segment follow the assumed model.

In the work of Humenberger et al. [12], a very fast real-
time implementation of a Census-based, local optimizing
stereo matching algorithm was introduced. The processing
time was evaluated for several platforms (central process-
ing unit, digital signal processor, and graphics processing
unit) reaching real-time capability on all of them. This algo-
rithm was especially designed for home-robot applications
and thus has to cope with textureless areas such as white
walls. The used local Census transform with a large win-
dow size of 16 × 16 can deal quite well with it but has its
limitations. Obviously, at textureless areas larger than the
Census window no reliable matching is possible.

3. Proposed Algorithm
Figure 1 shows the workflow of the proposed algorithm.

First, the images are captured with the calibrated stereo
camera, the lens distortion is corrected, and the image pair
is rectified. Second, the initial costs are calculated using
the sparse Census correlation of [12]. Then, a modified
semi-global matching (SGM) is applied to increase the con-
fidence of the matches, and thus to determine the initial dis-
parity map. Afterwards, a segmentation is done on either

the left stereo image or the texture map. A planar model is
fitted onto the segments which is used to finally determine
the refined disparity map.

3.1. Census Correlation

For fitting a planar model onto the image segments, an
initial disparity map is needed. Census correlation proved
to be a good choice for reliable costs calculation and is thus
used in this work. The Census transform uses local inten-
sity differences (n×m) around each pixel to transform the
intensity value to a bit string with

T (u, v) :=

n′⊗
i=−n′

m′⊗
j=−m′

ξ(I(u, v), I(u+ i, v + j)) , (1)

where I(u, v) is the intensity of pixel (u, v), n′ :=
⌊
n
2

⌋
,

m′ :=
⌊
m
2

⌋
, and

⊗
denotes a bit-wise catenation. The

auxiliary function ξ is defined as

ξ(x, y) :=

{
0 if x ≤ y

1 if x > y
. (2)

The costs of two Census transformed pixels are determined
with the Hamming distance of the two bit strings and are
calculated with

C(u, v, d) := Hamming(Tr(u, v), Tl(u+ d, v)) , (3)

where Tr(u, v) and Tl(u, v) are the bit strings of the pixel
(u, v) in the left and right images, respectively.

3.2. Modified Semi-Global Matching

Semi-global matching was first introduced by
Hirschmueller [9]. This technique minimizes the global
energy in horizontal, vertical, and diagonal directions.
Hereby, an eight or sixteen neighborhood can be used. The
costs-path Lr(p, dp) of the pixel p := (u, v) at disparity dp
in direction r is calculated recursively with

Lr(p, dp) := C(p, dp)+min(Lr(p− r, dp),

Lr(p− r, dp − 1) + P1,

Lr(p− r, dp + 1) + P1,

min
k∈D

Lr(p− r, k) + P2) ,

(4)

where P1 is a penalty, which is added if the disparities differ
by one and the penalty P2 is added if the disparities differ
by more than one (P1 < P2). D is the set of all possible
disparities. Afterwards the costs S are summed up over all
paths in all directions r

S(p, dp) :=
∑
r

Lr(p, dp) . (5)
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Figure 1. The workflow of the proposed algorithm.

For each pixel the disparity with the lowest costs is selected
to be the initial disparity (WTA).

Semi-global matching determines the optimal paths
through the whole image for each pixel, thus the costs of
the path have to be stored for the whole image. Zinner et
al. [19] showed that an optimized high-speed implementa-
tion of a Census-based stereo matching approach benefits
from a line-by-line processing of the images. Only a num-
ber of lines equal to the aggregation block size has to be
stored at once. Especially for embedded systems this ap-
proach is advantageous because the data can then be pro-
cessed in the fast on-chip memory. To keep the benefit of
line-by-line processing, a modified SGM technique is intro-
duced in this work. It uses the assumption that a part of the
image is enough for each pixel to benefit from the SGM.
Therefore the initial costs matrix is divided into horizon-
tal stripes with a range of nr pixels (the last stripe may be
smaller). The stripes are treated like the whole image and
the paths are calculated with Equ. 4 as well. For determin-
ing the optimal paths through the stripes a number equal
to the range of the initial costs has to be stored. Thus, the
memory consumption depends on the size of the range and
the number of disparities. The stripes are then processed
separately and the resulting disparity map (DM) is stored as
a combination of the total number of stripes. The influence
of this modification in terms of matching quality, process-
ing time, and memory consumption is described in detail in
Sec. 4.1.

3.3. Confidence and Texture

Even if SGM increases the reliability of the matches, a
number of false positives remain. To determine them, a con-
fidence value is calculated for each match during costs op-
timization. As mentioned above, large textureless areas are
difficult to match even if SGM is done over the whole im-
age. To identify them a texture image is calculated.

The confidence is calculated as the relation of the costs
difference between the best two matching candidates and
the maximum possible costs with

CM(u, v) := min

{
255, 1024

(
Δ(u, v)

MaxCosts

)}
, (6)

where Δ(u, v) is the difference between the best two match-
ing candidates for pixel (u, v). The texture is the result of a
variance filter over an n×m window with

TM(u, v) :=
1

nm

n′∑
i=−n′

m′∑
j=−m′

I(u+ i, v + j)2

−
⎛
⎝ 1

nm

n′∑
i=−n′

m′∑
j=−m′

I(u+ i, v + j)

⎞
⎠

2

.

(7)

Non-confident pixels and pixels in textureless areas are
then determined by the use of the two thresholds τ1 and τ2.
Only pixels which pass the confidence and texture check

DMinit(u, v) :=

⎧⎪⎨
⎪⎩

DM(u, v) if CM(u, v) ≥ τ1

∧ TM(u, v) ≥ τ2

0 otherwise
(8)

are used for the initial disparity map.

3.4. Segmentation and Plane Fitting

Once the initial disparity map is calculated, textureless
areas and non-confident pixels are optimized with segmen-
tation and plane fitting. The segmentation can either be
done by color on the left input image (mean-shift [5]) or
binary on the texture image. The texture image (TI) is de-
rived from the texture map with

TI(u, v) :=

{
0 if TM(u, v) ≤ ttexture

255 otherwise
, (9)

where ttexture is the used threshold. The segmentation pro-
cess on the binary texture image is straight forward. All
white pixels are united to one segment and all connected
black pixels are joint to single segments.

An advantage of the texture segmentation is that
monochrome input images can be used as well as color im-
ages. On the one hand, monochrome cameras deliver im-
ages of higher quality than color cameras and on the other
hand, for this kind of segmentation the focus exactly lies on
textureless areas which are the main regions of interest for
optimization. The advantage of color segmentation is that



the segments are more accurate and that occlusions can bet-
ter be optimized. Section 4 shows that color segmentation
proved to be more suitable for the Middlebury datasets and
texture segmentation for real-world scenes.

Both segmentations have in common that only pixels
which successfully passed the confidence check are used
for the plane fitting step. A plane is represented by three
parameters a, b, and c of equation

d(u, v) := au+ bv + c . (10)

These parameters can be estimated with the method of least
squares by solving the linear equation system

⎡
⎢⎢⎢⎢⎢⎢⎣

m∑
i=1

u2
i

m∑
i=1

uivi
m∑
i=1

ui

m∑
i=1

uivi
m∑
i=1

v2i

m∑
i=1

vi

m∑
i=1

ui

m∑
i=1

vi
m∑
i=1

1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

a

b

c

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

m∑
i=1

uidi

m∑
i=1

vidi

m∑
i=1

di

⎞
⎟⎟⎟⎟⎟⎟⎠

, (11)

where m is the number of confident pixels in the segment.
Unfortunately this is not robust against outliers, thus the
method described by Bleyer and Gelautz [3] is used. The
problem is solved by iteratively eliminating outliers until
the calculated plane has reached its final state.

A problem of segmentation regarding real-time capabil-
ity is that the processing time strongly depends on the num-
ber of segments found. This work tries to deal with this
problem by limiting the number of possible segments. The
authors know that this is just a first step towards real-time
segmentation because also the absolute number of confident
pixels inside the segments influences the processing time.

After plane fitting, the last step is to optimize and refine
the initial disparity map with the calculated planar model.

3.5. Disparity Map Refinement

In contrast to traditional model-based segmentation op-
timization, in this work only non-confident pixels (which
failed the confidence check) or pixels in textureless areas
(which failed the texture check) are refined with the calcu-
lated planes. The others are taken from the initial disparity
map. Additionally, only reliable segments are used for re-
finement because in difficult areas the initial data may be
not good enough for a correct model estimation. The reli-
ability of the planes is differently determined for color and
texture segmentation.

For color segments the function

Ωc(C) :=

{
true if nc

np
≤ tconfidence

false otherwise
(12)

is used where C is the segment, nc the number of non-
confident pixels and np the number of pixels in C. If the
segment is reliable, thus the fraction of confident pixels in
the segment is higher than the given threshold tconfidence,
Ωc is true and false otherwise.

In large textureless areas often a low number of confident
pixels exists. The use of Ωc would not be advantageous be-
cause the percentage of confident pixels in textureless areas
varies with the segment size. To overcome this, another re-
liability metric,

Ωt(C) :=

{
true if δ ≤ tplane

false otherwise
, (13)

is introduced to measure the quality of the estimated plane
where tplane is the used threshold. The criterion is the av-
erage distance

δ :=
1

m

m∑
i=0

|di − (aui + bvi + c)| , (14)

between the points and the estimated plane, where m is the
number of confident pixels in the segment.

Summarizing, the last step of the proposed algorithm is
the refinement of the initial disparity map. For color seg-
mentation only non-confident pixels and for texture seg-
mentation only pixels in textureless areas are refined. The
reliability of the estimated planes is determined and only
reliable planes are used for this final optimization.

4. Evaluation
This section presents the results of the proposed algo-

rithm. First, the matching quality, the processing time,
and the memory consumption of the modified semi-global
matching is evaluated. Then, on the one hand, for evaluation
of the matching quality the well known Middlebury ranking
is used. The main advantage is the possibility of comparing
the stereo vision algorithm with many others online. The
datasets used for this evaluation are not realistic represen-
tatives for the target application, thus results for real-world
scenes are shown on the other hand.

4.1. Modified Semi-Global Matching

Semi-Global Matching optimizes the disparities in either
8 or 16 directions with the use of two penalties P1 = 54 and
P2 = 99. The use of 16 directions showed no considerable
enhancement of the results so 8 directions are used because
of the shorter processing time. The optimal penalties were
determined by evaluation of all meaningful combinations.

Figure 2 shows an evaluation of matching quality and
memory consumption for the modified SGM approach. As
can be seen in Fig. 2(a), the average percentage of matched
pixels over the four main ranking Middlebury datasets with
ranges nr = 5(5)190 is very similar to the original ap-
proach (straight black line). The enhancement of the mod-
ified SGM is the reduced memory consumption. Original
SGM has a memory consumption of about 40 MB for the
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Figure 3. Illustration of the confidence improvement by using
modified SGM with nr = 55. The confidence value using pure
Census is CM(u, v) = 13, 65 and with SGM the maximum of
CM(u, v) = 255.

Teddy dataset. As can be seen in Fig. 2(b) if a range of
about 55 is used, the memory consumption is about 5 MB.
If a very small range of 5 is used, the memory consump-
tion even is about 300 KB which makes it very suitable
for embedded realization. For better visualization Fig. 2(c)
shows the memory consumption and the percentage of cor-
rect matches for the Tsukuba dataset plotted in one chart.

As a reminder, the confidence of the matches is essential
for successful plane fitting. Figure 3 shows the improve-
ment of the confidence when modified SGM is used. Both
costs functions show the same correctly matched pixel (dis-
parity is at the lowest costs) for Census on the left side and
for Census with modified SGM on the right side. The differ-
ence between the two best matching candidates is very low
for Census, thus the confidence is very low. SGM highly in-
creases the difference and thus the confidence as well. The
more correct matches are marked as confident, the more can
be used for the plane fitting step what again increases the
quality of the final disparity map.

4.2. Middlebury Ranking

Scharstein and Szeliski [14] have developed an online
evaluation platform, the Middlebury stereo evaluation [14],
which provides about 40 stereo image datasets. The main
feature is an online comparison of submitted area-based
stereo matching algorithms. To evaluate an algorithm on
this website, disparity maps of four datasets have to be gen-
erated and uploaded. In the proposed algorithm, due to oc-
clusions or non-confident areas, not all pixels have a cor-
responding match. For the Middlebury evaluation a com-
pletely dense disparity map is mandatory so the missing pix-
els have to be extrapolated. For this evaluation, the color-
based segmentation approach is used because it has the big
advantage that many occluded areas (if Ωc is true) are filled
with the calculated planes rather with extrapolation. Out-
liers are reduced with a final median filter.
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Figure 5. The percentage of correctly matched pixels with Census
correlation, plane fitting (color segmentation) and SGM.

The resulting disparity maps are compared with the
ground truth, which is the reference disparity map of the
scene. Figure 4 shows the resulting disparity maps of the
proposed algorithm. Figure 5 shows the resulting improve-
ments of the different algorithm steps.

Table 1 compares different algorithm configurations in
the Middlebury evaluation framework. The best result in
the ranking (rank 37) could be achieved with a combination
of Census correlation, SGM and plane fitting. Additionally
to the proposed algorithm steps, the results of standard SAD
for local costs calculation are shown.

As can be seen, SGM clearly improves the quality of the
matches. When using the proposed modified SGM tech-
nique the rank shrinks a few places. This is caused by the
fact that the entries in the Middlebury ranking are very close
together so little worse results may cause significant degra-
dation in the ranking. A meaningful metric is the average
bad matches percentage. It shows that the overall perfor-
mance of original SGM and the modified version is quite
similar. Also interesting is, when using the average bad
matches as criterion, that SGM produces nearly the same
matching quality for Census correlation and SAD.

An important factor in Table 1 is the confidence thresh-
old. As mentioned in the previous section, SGM signif-
icantly increases the confidence of matched pixels. In
comparison to SAD and Census, for SGM a much higher
confidence threshold can be used without eliminating too
many true positives. This increases the number of confident
matches which is essential for the plane fitting step.

The evaluation of the processing time shows that the use
of multi-core central processing units (CPU) reasonably ac-
celerates the processing. The only performance optimiza-
tion is the parallel processing of the functional behavior
with OpenMP1, thus an optimized implementation can for
sure achieve a lower processing time.

In the main ranking of the Middlebury website, all
matches within an error threshold of 1 are valid. If the error
threshold is set to 0.5, which means that subpixel accuracy

1http://www.openmp.org
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Figure 2. Evaluation of different ranges nr for modified SGM: (a) Percentage of correct matched pixels (average over the Middlebury
datasets), (b) memory consumption, and (c) a combined chart of memory consumption and correct matches.

Figure 4. The results of the proposed algorithm (Census correlation with SGM and color-based segmentation) for the Middlebury datasets.

is supposed, the best position of the proposed algorithm in-
creases to rank 10.

4.3. Real-World Scenes

The Middlebury stereo database gives a good idea of the
matching quality in comparison to other approaches. The
drawback is that the datasets are created under very con-
trolled conditions with high quality digital cameras which
cannot be found in real-world applications. To show the
power of plane fitting with texture segmentation, two real-
istic scenes for robot applications are evaluated.

Figure 6 shows a floor scene which is difficult for area-
based stereo matching approaches. In general, randomly
patterned surfaces, such as the carpet in this scene, can be
matched well. The most difficult areas for stereo match-
ing here are the monotone white walls (marked black in the
texture image in Fig. 6(c)). The pure Census correlation in
Fig. 6(e) can deal with the carpet well but has its problems
with the walls. The same for the combination of Census
and SGM in Fig. 6(f) with the enhancement that the carpet
is completely dense. The walls are in both disparity maps
reduced to noise. To deal with this, the confidence check
was introduced which eliminates obviously wrong matches.
The result of Census correlation with confidence check in
Fig. 6(g) shows that the disparity map is very sparse and al-
most all matches of the walls are eliminated. The proposed
algorithm was developed exactly to optimize such scenes.
The resulting disparity map in Fig. 6(h) shows that areas
of the image with enough texture (white in the texture im-
age) are kept original and areas with low texture (black in
the texture image) are used for the segmentation-based op-

timization. The quality of the planes strongly depends on
the data used for fitting, so a high confidence threshold of
τ1 = 200 is used. To show the quality of the 3D data
the 3D point clouds for three algorithm configurations are
given in Fig. 7. As can be seen, the walls are completely
wrong when no optimization is used. Only the planes in
Fig. 7(e) are good estimates of the walls in the scene. Espe-
cially Fig. 7(c) shows the impact of the higher confidence of
Census in comparison to SAD. Not all textureless areas can
be optimized using texture-based segmentation. Figure 8
shows an example where an estimated plane does not fit
correctly. Here, the estimated plane in Fig. 8(c) of the wall
behind the door is obviously wrong. Therefore the thresh-
old function Ωt was introduced to eliminate such planes as
shown in Fig. 8(d). A limitation of the approach is that the
fitted planes are only estimations of the real world. Prob-
lematic are curved surfaces because a plane cannot be fitted
on there. However, most curved surfaces are not textureless
in the images because of different light reflections on the
surfaces. Additionally, the probability that such a surface
would be eliminated by Ωt is high because the distance of
the points from the curved surface to the estimated plane is
large. Nevertheless, in indoor home robot applications, the
assumption that textureless areas are planar in many cases
can be made.

5. Conclusion and Future Work

This paper introduced a stereo matching approach con-
sisting of a combination of Census-based correlation, SGM
disparity optimization, as well as segmentation-based plane



Table 1. The proposed algorithm in different configurations evaluated with the Middlebury framework with the processing time for a
multi-core CPU and the used confidence threshold.

Threshold = 1.0 Threshold = 0.5 Processing time (ms)
Av. bad Av. bad 1 core 2 cores 4 cores Confidence

Algorithm Rank matches Rank matches Teddy Tsukuba Teddy Tsukuba Teddy Tsukuba threshold
Census 56 9.86 16 14.40 582 129 348 83 230 58 30
Census + SGM 40 8.35 9 12.10 6931 834 3820 489 2142 262 95
Census + SGM + Plane Fitting 37 8.19 10 12.20 17526 4604 11708 4019 8362 3622 95

SAD 66 13.20 57 22.20 505 99 345 76 252 59 5
SAD + SGM 47 8.62 19 10.50 6839 824 3851 476 2171 267 10
SAD + SGM + Plane Fitting 46 8.35 19 15.20 18078 4653 11730 4019 9398 3906 10

Census + SGM (nr = 10) 52 9.19 14 13.70 6175 946 4585 545 3010 481 95
Census + SGM (nr = 55) 55 9.70 14 13.90 5159 689 2877 461 2069 368 95
Census + SGM (nr = 180) 51 9.05 11 12.90 5661 757 3146 641 2978 571 95

Census + SGM (nr = 10) + Plane Fitting 48 8.84 12 13.70 16123 4853 12448 4086 9561 3561 95
Census + SGM (nr = 55) + Plane Fitting 52 9.32 14 14.00 14096 4311 9907 3971 8326 3726 95
Census + SGM (nr = 180) + Plane Fitting 46 8.90 11 13.10 15206 4513 10298 4282 10248 4177 95

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. The results of the floor scene with large textureless areas: (a) original left image, (b) original right image, (c) texture image
(τ2 = 20), (d) texture-based segmentation, (e) disparity map for pure Census correlation, (f) disparity map for Census correlation and
SGM, (g) disparity map for Census correlation with confidence check, (h) disparity map for Census correlation, SGM, and plane fitting.

fitting for enhancements on textureless and occluded areas.
The algorithm is designed for robot applications such as
navigation or scene interpretation and the single steps are
capable for real-time implementation. A modification of
original SGM makes the approach capable for embedded
realization as well. The image is divided into stripes that
may fit into fast on-chip memory of digital signal proces-
sors. Semi-Global Matching significantly increases the con-
fidence of the matches. It is shown that the segmentation-
based plane fitting performs well with the Census-based
correlation method. The main advantage is the improve-
ment of the matching quality in occluded and textureless
areas. Furthermore it is shown that the texture-based seg-
mentation approach makes it possible to match large tex-
tureless areas very well which are a significant problem for
standard area-based stereo matching approaches.

In future research more plane fitting techniques i.e. the

Random Sample Consensus (RANSAC) algorithm, will be
evaluated. Furthermore, a different set of models that can
deal with curved surfaces as well will be developed. To
prove the real-time capability an optimized implementation
on a GPU of the proposed algorithm as well as an embedded
realization of the modified SGM approach are planned.
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