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Abstract—Building knowledge for robots can be tedious, espe-
cially if focused on object class recognition in home environments
where hundreds of everyday-objects - some with a huge intra
class variability - can be found. Object recognition and especially
object class recognition is a key capability in home-robotics.
Achieving deployable results from state-of-.the-art algorithms is
not yet achievable when the number of classes increases and near
real-time is the goal. Hence, we propose to exploit contextual
knowledge by using sensor and hardware constraints from the
robotics and home domains and show how to use the internet
as a source for obtaining the required data for building a fast,
vision based object categorization system for robotics. In this
paper, we give an overview of the available constraints and
advantages of using a robot to set priors for object classification
and propose a system which covers automated model acquisition
from the web, domain simulation, descriptor generation, 3D data
processing from dense stereo and classification for a - not too
far - robot scenario in an internet-connected home-environment.
In this work we show that this system is capable of being used
in home robotics in a fast and robust way for recognition of
object classes commonly found in such environments, including
but not limited to chairs and mugs. We also discuss challenges
and missing pieces in the framework and useful extensions.

Index Terms—dense stereo, 3D, disparity, support planes, cog-
nitive, object class recognition, real-time, web, home-environment,
mobile robot, shape matching, retrieval

I. INTRODUCTION

Object class recognition, especially in indoor environments,
is an important task for mobile robotics applications as it paves
the way for robots to operate successfully in home environ-
ments. Human machine interaction, robot object interaction,
robot navigation and localization and mapping can greatly
benefit from a system which is able to categorize objects in a
home environment.

This paper addresses the problem of vision-based catego-
rization of objects on a robot platform in home environments.
We are particularly interested in categorizing types of furniture
found in home environments. This is a challenging problem
due to poorly-textured scenes with many wiry objects like
chairs, occlusions and clutter and piecewise planar surfaces.

Laser scanners are widely used in robotics but most have
insufficient resolution and power to detect narrow objects such
as leg of chairs for example. The single scanline of the laser at
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a specific height makes its use for detecting furniture like tables
challenging, as many legs are displaced towards the center
of the object and horizontal layers may therefore function
as invisible obstacles. The use of rotating lasers for full 3D
capturing is not applicable in our scenario as the research goal
is for low-cost passive sensors for use in home-environments.

To overcome the disadvantages of the environment and
target categories, we decided to use a pure-vision based system
for the task, namely dense stereo, and develop the system
operation from the view of an embodied agent situated in the
home environment. We start from the requirement to devise a
framework that can be easily extended to new object classes.
To this end we utilise the internet as source to obtain models
for new objects. This has been attempted for appearance of
objects in [11] where they showed a rather slow approach used
laser scans and domain adaption. Alternatively, we propose to
use only the perfect 3D data and transform it into sensor simu-
lated data to cope with the typical problems of real applications
such as only one view of an object (2.5D) with self-occlusion,
incomplete models, aliasing effects and realistic noise levels
froms tereo data. We then use these data to calculate object
classifiers extending the 3D Harmonics descriptor [3] with the
constraints from the robotics domain and match it against the
database to find the nearest class to the object.

The paper is organized as follows. After discussing related
work, Section III introduces the hardware configuration and
discusses the corollary constraints and challenges. This is
followed by the stage of object model collection and descriptor
preparation in Section IV. The 3D data acquisition, filtering,
support plane extraction and segmentation is presented in
Section V to obtain the elementary parts for the recognition
step. Section VI describes the descriptors and the matching
for the object classification task. Finally, experimental results
demonstrate our approach on a challenging dataset in Sec-
tion VII and we discuss the open problems and propose ways
to solve them. This leads to a short conclusion and an outlook
on future improvements is presented in Section VIII.

II. RELATED WORK

Recent results on the Pascal visual object classes challenge
20091 show the state of the art in 2D object class recognition.
In the classification challenge, where the goal is to predict
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whether at least one object of a given class is present in an
image, the top performer reaches 88.1% average precision (AP)
on class aeroplane and 59.5% AP on chairs. In the detection
challenge, where the goal is to predict the bounding boxes of
all objects of a given class in an image, the results are far below
the classification challenge. The best methods gets 47.8% on
the aeroplane class and 15.0% on chairs. These results are
produced using only imagery from flickr2 as training input.

At the other side of the spectrum there is the work on 3D
model retrieval in large databases. One state of the art search
engine for 3D models is presented in [3] where they support
2D and 3D shape queries, are able to achieve more the 50%
AP on living room chairs with their 3D Harmonics descriptor
and are able to search the whole database in less than one
second. The data they are working on is purely synthetic and
the models are in high resolution with fine details and no noise.

Between these two extrema, there is the work on 2.5D
imagery mostly taken from depth sensors like laser scanners,
time-of-flight cameras or even stereo cameras. Object clas-
sification utilizing object part detection with a time-of-flight
range camera was done in [5]. They use shape factors for
describing components of a chair, where the object parts are
tracked in their system as a single view contains not enough
information. This approach was only shown on chairs, makes
assumptions on the pose of the chair and is hard to apply
to a wider variety of classes. [6] utilized a 3D laser scanner
on a mobile robot for object classification using an Adaboost
cascade of classifiers composed of several simple classifiers on
3D range and reflectance data. Recognition of objects in 3D
LIDAR point clouds of an entire city was done by [8] using
spin images [7] and other shape and contextual features.

Most of the systems using real world data make assumptions
on the location of the objects, i.e., ground floor detection or
detection of other support planes. The work most similar to
our work is [10] where a mobile robot equipped with a tilting
laser scanner extracts support planes, on which objects are
assumed and a subsequent object recognition and classification
step is performed on 2D high resolution images taken at these
locations.

We also have to mention the Sharp 3D SHREC shape
retrival contest 3 where the goal is to retrieve similar objects
from a database given a range scan. The best method, which
uses a SIFT-based approach on a grid spanned over the model,
achieves about 50% AP on these high resolution, laser scanned
objects. This contest is - to our knowledge - the thematically
closest dataset available to test 2.5D object classification on.

III. ROBOT SETUP

A. Hardware & Software

For our experiments we used our robot which consists of
a MobileRobots Pioneer P3-DX4 with an aluminum rack for
mounting the stereo camera and the laptop. For navigation
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purpose only, we also use a hokuyo laser scanner. The stereo
camera consists of two monochrome and one color usb camera
modules UI-1226LE5. Stereo calculation is done with the two
monochrome cameras with a baseline of 12cm, the centered
color camera is used to overlay appearance if needed. Because
the stereo camera is the main sensor modality of the robot, it
is important to maximize the field of view: we use a 2.5mm
lens, which gives us a usable resolution of 600x300 pixels
after rectification. The stereo engine is a GPU implementation
of the census transform[1] which has the advantage of freeing
the CPU cores for 3D data processing in addition to image ac-
quisition and robot control. As main computer a MacBookPro
is used and software modules are linked together with the robot
operating system ROS6 from WillowGarage7.

B. Priors & World Knowledge

We now give an overview of constraints that we exploit as
priors in our robotic object classification system.

1) Scale: Pure image based recognition and classification
algorithms do not have access to the scale of objects in the
image. Therefore they have to use multi-scale approaches that
increase the computational load tremendously. Exploiting a
calibrated stereo camera, the scale ambiguity is non-present
and algorithmic complexity is reduced such as shown recently
in [9]. In addition to the knowledge of the scale of data, we also
know the dimensions of the object classes. The minimum and
maximum dimension can be used in filtering and segmentation
stages as additional domain knowledge. Finally, even if the
dimension for an object class is not known, a robot system
provides the possibility to interact with the user to learn this
information or to explore the environment to obtain it from
trials.

2) Orientation: Knowing the sensor-to-robot geometry and
assuming regular robot movement regarding to the robot
specifications, we can infer the orientation and location of
the ground plane to within a certain accuracy. We use this
information in the ground plane extraction step and constrain
the ground plane to ”touch” the wheels of the robot. Not doing
so indicates that the camera can not see the floor because the
robot is in front of a table (which is a common situation in
home robotics where the robot searches for objects on table
and counters). Furthermore, for locating objects, it is a valid
assumption that objects reside on almost horizontal regions,
which significantly reduces the search space.

3) Room and Object Class: Another priory is to exploit
contextual knowledge, for example, about the class of objects
to search for. Rooms are likely to contain room-specific
objects. As shown in [2] this information can be extracted
automatically from the web and proves valuable in object
search.

4) Datasources: A mobile robot equipped with sensors has
the option to take images from different views. Additionally,
different image characteristics can be exploited: monochrome,
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color, and 3D data. Finally, we noticed an advantageous side
effect with using cheap wide angle lenses without an IR filter:
this results in visually inferior imagery but black objects appear
in shades of grey and 3D data can be calculated. For the ”real”
appearances of the objects, we need to use the centered color
camera module.

IV. WEB-BASED MODEL AQUISITION

Data collection for learning new object classes is a time
consuming and sometimes tedious work if one tries to get a
large number of classes and especially exhausting if the data
is not standard imagery but 3D data which has to be created
with special hardware. Therefore we propose another approach
and tap the huge amount of freely available 3D models from
the web.

A. Web-Download

The input into our model acquisition system is the name
of the new object class. With this keyword we search for 3D
models on Google Warehouse8. Because some object classes
have a huge intraclass variability, a large amount of training
data is required. Classes such as ”dining chair” have a high
intraclass variability and need many exemplar models whereas
classes such as ”apple” only need one or two exemplars to
be useful. Empirically we found that an upper bound of 60
models per class is a good choice, where this upper bound
is not reached if there are not enough models available. As
the 3D models from Google Warehouse come in a proprietary
format, we first use Google Sketchup for automatic conversion
into the open STL format.

B. Domain Simulation

The next step is to adapt the models to the domain. The
models from the web are full 3D models whereas the sensor
input from the stereo cameras is 2.5D (data from one view
of the object including self occlusion and possibly other
occlusions, noise and erroneous data). In addition to that, the
models from the web are so called ”polygon soups”: a loose
bunch of triangles with no ordering, with holes, and artefacts.
Models have no scale, no orientation, and the level of detail
can range from very low (hundreds of triangles) to very high
(hundred thousands of triangles). The data from the robot on
the other side consists only of (noisy) data points.

To use the models from the web, we generate synthetic
2.5D models by rendering and sampling the 3D models from
views around the model. We use 45 degree steps in elevation
and azimuth which results in 24 views for a model (Figure 1).
These 24 views are sufficiently dense for the type of descriptor
used to interpolate between views. To discard details and
therefore improve generalization of the models, we downscale
the models by rendering the models in 100x100 pixel images
which gives about 5000 data points for a model which fills the
rendering window to 50%. Figure 2 shows the 2.5D partial
point clouds created for one model from the chair and mug
classes. The most useful information in these figures is the

8http://sketchup.google.com/3dwarehouse/

fact that the same object can have a completely different
shape and therefore a different representation when seen from
different viewpoints. Because the orientation of the 3D model
downloaded is unknown, we have to render views equally
spaced around the model, despite our prior from the real world
where chairs for example are mostly seen standing on their
legs. To obtain a generic method that extends to arbitrary
objects we do not include special priors for this case. Finally,
for every of the 24 views of the model a 3D descriptor is
calculated and stored into a database (please see Section VI).

Fig. 1. Model rendering from 24 views at 45 steps in elevation and azimuth.

Fig. 2. The resulting 24 2.5D point-clouds generated from the web-
downloaded 3D model of a mug and a chair.

C. Discussion

This web-based model learning is an easy method for
teaching the robot new objects and object classes and provides
a user-friendly interface where only the name has to be fed into
the system, which can easily be done by audio or keyboard
input. The system can handle large intraclass variability, is
extensible and scalable and does not need user interaction
despite the new class names.

V. SEMANTIC DATA PARTITIONING

An overview of the steps in the processing chain is given
in Figure 3 and explained in the following sections. Our GPU-
based dense stereo system delivers disparity maps from which
we calculate the initial 3D point cloud. The left rectified image
and the corresponding disparity map are shown in Figure 4.

A. Filtering

Because data from the stereo system includes outliers we
have to employ outlier-filtering of the 3D data prior to further
processing. To eliminate sparse points we use a box filter where



Fig. 3. Processing steps for extraction of candidate point clouds.

Fig. 4. Left rectified input image and corresponding disparity map.

the size of the filter is twice the mean point distance in the
point cloud. The filter significantly reduces sparse points on
the object boundaries and wrong matches coming from the
stereo engine which can be seen in Figure 6.

B. Support Plane Detection

In the first iteration of the data partitioning the ground
floor is the basic and elementary support plane. We apply a
RANSAC-based plane fitting procedure exploiting the known
robot geometry, i.e., the camera pose wrt. the wheels, and we
use the two points where the wheels touch the ground as two
of the three points in the plane candidate search. This gives
more robust results in cases where the ground plane is not the
dominant plane in the scene. Figure 5 shows the initial 3D
point cloud with the floor detected and coloured in red.

Fig. 5. Floor detection result.

C. Clustering

The next step is to obtain groups of data points that may
indicate individual objects. To this end we use clustering based
on flood filling on the remaining points above the ground
plane. The size of the filter kernel depends on the size of the
smallest object we are looking for and the minimal allowed
distance between two objects. As we already have the object
classes we can extract these parameters from the database. For
the experiments, the kernel diameter is set to 5cm. Results of
this procedure can be seen in Figure 6 where the clusters are
encoded with different colours.

Fig. 6. Point cloud clusters.

D. Region Prior Filter

One prior is the assumption that objects are located only
on support planes. Hence, an efficient way of reducing the
candidate clusters for object classification is to reject all
clusters outside the support region. To obtain the boundary
for the support plane, the 2D convex hull is calculated and the
projected point clusters are tested against the plane polygon
using the odd-even test. The support plane boundary is shown
in red in Figure 7 with the projected clusters in green. Only
clusters inside this support plane are valid candidates for the
next processing step.

Fig. 7. Support plane boundary.

E. Supported Candidates Filter

The ”object on support plane” assumption also implies
that the candidate objects are actually ”on” the support plane.
We therefore only process pointclusters which are attached to
their support plane. The resulting object candidates for the
classification produced by the data quisition chain are shown
in red in Figure 8

Fig. 8. Candidate objects for classification.

F. Play it again, Sam

Up to this point, the only support plane extracted from the
data is the ground floor. For finding objects on further support
planes – such as objects on tables and counters – the RANSAC-
based support plane detection and the associated clustering,
region prior and candidate filtering stages are performed again
on the clusters. The object candidates are not modified for the
classification stage, so objects residing on chairs are included



in the chair descriptor in the first place and are detected
separately in the second stage. Altering point clouds – i.e.,
removing parts or objects – prior to their classification is not
feasible, because the object class is not know yet.

VI. CLASSIFICATION

The goal of classification is to find the correct class label
for a given data cluster. This can also be seen as finding the
most similar object to the query data and assigning the label
of the most similar match. Finding similar objects - especially
3D models in large databases - with efficient and robust
algorithms has attracted a good amount of researchers over the
last years. Following the proposed robotics approach to object
classification, we want to stress the following properties and
differences to classical approaches [].

A. 3D Descriptor Properties
The biggest challenge in 3D shape matching is the fact that

objects should be considered to be the same if they differ by a
similarity transformation. To explicitly search over the whole
space of transformations is impracticable because efficiency is
a key property a retrieval algorithm should have. Hence, the
similarity metric must implicitly provide the similarity at the
optimal alignment of the two models.

1) Normalization: This can be achieved in a normalization
step prior to the similarity calculation for each model where
translation, rotation and scale are normalized, i.e., a canonical
frame is computed.

Normalization for translation is usually done by translation
of the center of mass of the model into the coordinate origin.
Normalization for scale can be done by scaling the points
by the maximum distance from the origin or by the average
distance of the points to the center of mass which provides
more robustness when the data has outliers.

Normalization for rotation is less robust than normalization
for translation and scale and heavily depends on the object
and object classes as illustrated in [3]. Normalization for
rotation is often done by using the principal axes calculated
from the eigenvectors of the covariance matrix for rotating
the object into a common frame. Its already problematic on
3D data, extracting principal components from 2.5D data will
give incorrect results due to the missing one-view data.

2) Invariance: To avoid the imperfections of a prior nor-
malization step, the alternative is to design the descriptor in a
transformation invariant fashion. This means that the descrip-
tors produce the best similarity measure for any transformation.
Because of all the difficulties with normalization, we propose
to apply an invariant descriptor.

3) Spherical Harmonics Descriptor: The spherical har-
moncs descriptor[4] is a affine invariant descriptor which is
calculated from a 64x64x64 voxel grid. The calculation of
the descriptor from a coarse voxel grid gives us the needed
generalization for object class recognition. The descriptor is
represented and stored as a 2D histogram in the database which
enables us to efficiently calculate the k-nearest neighbours
using the Euclidean distance between the query and all entries
in the database.

B. Bounding Boxes

Using the real world size of objects, we can apply a pre-
filtering stage for sorting out object classes which are way to
big or small to be the searched object class. This not only
increases the performance in terms of precision/recall but also
increases the computational performance as only a small part
of the database has to be matched against the query, which can
be a huge speed-up when the number of classes increases.

VII. RESULTS

Tests are shown on datasets collected in our lab on chairs
and on a table scene.

The chair classes in our system are ”dining chair”, ”office
chair” and ”arm chair”. For chairs, the system is able to
produce classification results useful for robotic purposes. Our
test-database consists of 119 point clouds where 47 chairs
are present. The segmentation stage was able to successfully
extract 30 of the 47 chairs from the scene. A representative
sample of testscenes with chairs in arbitrary position and
distractor objects can be seen in Figure 10. Figure 9 shows
the precision recall curve for the diningchair class. The system
only detected 13 instances of dining chairs correctly. The
reason for this is that some of the chairs differ a lot from the
chairs we downloaded from the web and that some of the chairs
were classified as office- or armchair as these classes share
common similarities. Figure 9 shows the precision recall curve
when testing against the metaclass of chairs, consisting of
dining-, office- and armchairs. All tests are performed using the
boundingbox size of the point clouds for a coarse prefiltering of
possible classes which increases the performance of the system
as the point clouds alone provide - depending on the object
class - too little information to produce robust and reliable
results. The decrease in performance is only marginal for chairs
as to be seen in Figure 9 as they provide enough structural
shape to differ from other object classes. This is no longer
true for primitive shaped objects like bottles or mugs as the
only distinction between a round paper basket and a mug -
when seen from a certain viewpoint - is their size, despite
their common location. This can be seen in Figure 11 where
there is just not enought data for distinguishing between some
small objects. Nevertheless most of the mugs on the table were
correctly identified.

Fig. 9. Left:Precision recall curve for the diningchair class. Right:Precision
recall curve for the metaclass cair. The blue curve shows the performance of
the spherical harmonics despcriptor with a boundingbox prior, green without.



Fig. 10. Testscenes with chairs and distractor objects. Green dots indicate
correct class, red dot indicate false positive and red cross indicates not detected
as belonging to class chair. Image 2:Chair lying on the ground could not be
classified due to unsufficient segmentation; Image 6 the box was wrongly
classified as belonging to the class chair.

Fig. 11. A tablescene with instances of classes mugs, cans, bottles, apple
and light bulb.

The presented system heavily depends on good and com-
plete data. Without sufficient data the support planes can not
be extracted and the clustering of the object will produce
multiple fragments which renders the classification with global
desciptors useless.

VIII. CONCLUSION & FUTURE WORK

We have shown a robot system which is able to categorize
objects in a home environment with vision only sensors. The
set-up uses a stereo-camera as only sensor and uses the dense
3D data as primary features. The system can perform scene
segmentation and object class recognition on a wide variety of
classes including furniture like chairs and objects often found
in office and home-environments like mugs and bottles. We
have shown that this approach is feasible to work under real
conditions and gives some promising results.

The future system improvements are twofold: On the one
side we will port the algorithm from the existing Python
implementation to C++ to gain a speed-up which allows us
to perform object class recognition in shorter intervals and
enables a more smooth robot-user interaction. On the other
side, to overcome the deficiencies of using a local stereo
algorithm, we plan to switch to a global dense stereo system
with more dense and boundary preserving 3D data, which
enables us to detect our support planes in a more stable manner.
We also hope to use the improved data for door detection.
To better disambiguate better between the classes, the spatial
arrangement of these objects with respect to the map or to
other objects will be incorporated in future work.
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