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Abstract—This paper introduces a robust descriptor for match-
ing vertical lines among two or more images from an omnidirec-
tional camera. Furthermore, in order to make such a descriptor
usable in the framework of indoor mobile robotics, this paper
introduces a new simple strategy to extrinsically self-calibrate
the omnidirectional sensor with the odometry reference system.
The first part of this paper describes how to build the feature
descriptor. We show that the descriptor is very distinctive and
is invariant to rotation and slight changes of illumination. The
robustness of the descriptor is validated through real experiments
on a wheeled robot. The second part of the paper is devoted to
the extrinsic self-calibration of the camera with the odometry
reference system. We show that by implementing an extended
Kalman filter that fuses the information of the visual features
with the odometry, it is possible to extrinsically and automatically
calibrate the camera while the robot is moving. In particular, it
is theoretically shown that only one feature suffices to perform
the calibration. Experimental results validate the theoretical
contributions.

Index Terms—omnidirectional camera, visual tracking, feature
descriptor, extrinsic camera calibration.

I. I NTRODUCTION

A. Motivation and Contribution

One of the challenges in mobile robotics is designing
autonomous vehicles able to perform high level tasks
despite of the quality/cost of the sensors. Vision sensors and
encoder sensors are in general cheap and suitable for indoor
navigation. In particular, regarding vision, omnidirectional
camera is very effective due to the panoramic view from a
single image. In this paper, we introduce a robust descriptor
for matching vertical lines among two or more images from
an omnidirectional camera. Furthermore, in order to make
such a descriptor usable in combination with encoder data,
we also introduce a new simple strategy to extrinsically
self-calibrating the omnidirectional sensor with the odometry
reference system.

The contributions of the paper are therefore the following
two: 1) Introduction of a new descriptor for matching vertical
lines among two or more images from an omnidirectional
camera; 2) Introduction of a simple strategy to extrinsically
calibrate an omnidirectional camera with the odometry system.

B. Previous work

One of the most important problems in vision based
robot navigation systems is the search for correspondences
in images taken from different viewpoints. In the last
decades, the feature correspondence problem has been
largely investigated for standard perspective cameras.
Furthermore, several works have provided robust solutions
for wide-baseline stereo matching, structure from motion,
ego-motion estimation, and robot navigation (see [Matas02],
[Kadir04], [Mikolajczyk01], [Lowe04], [Mikolajczyk98],
[Mikolajczyk02], [Baumberg00], [Tuytelaars04]). Some of
these works normalize the region around each detected
feature using a local affine transformation, which attemptsto
compensate for the distortion introduced by the perspective
projection. However, such methods cannot be directly applied
to images taken by omnidirectional imaging devices because
of the non-linear distortions introduced by their large field of
view.

In order to apply those methods, one needs first to
generate a perspective view out of the omnidirectional image,
provided that the imaging model is known and that the
omnidirectional camera possesses a single effective viewpoint
(see [Nayar97]). An application of this approach can be found
in [Mauthner06]. There, the authors generate perspective
views from each region of interest of the omnidirectional
image. This image unwrapping removes the distortions of
the omnidirectional imaging device and enables the use
of state-of-the-art wide-baseline algorithms designed for
perspective cameras.
Nevertheless, other researchers have attempted to apply
to omnidirectional images standard feature detectors and
matching techniques which have been traditionally employed
for perspective images. In [Micusik06], for instance, the
authors check the candidate correspondences between two
views using RANSAC algorithm.

Finally, other works have been developed, which extract
one-dimensional features from new images called Epipolar
plane images, under the assumption that the camera is moving
on a flat surface (see [Briggs06]). These images are generated
by converting each omnidirectional picture into a 1D circular
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image, which is obtained by averaging the scan lines of a
cylindrical panorama. Then, 1D features are extracted directly
from such kinds of images.

In this paper, we deal with real world vertical features
because they are predominant in structured environments.
In our experiments, we used a wheeled robot equipped
with a catadioptric omnidirectional camera with the mirror
axis perpendicular to the plane of motion (Fig. 1). If the
environment is flat, this implies that all world vertical lines
are mapped to radial lines on the camera image plane.

The use of vertical line tracking is not new in the
Robotics community. Since the beginning of machine vision,
roboticians have been using vertical lines or other sorts of
image measure for autonomous robot localization or place
recognition.
Several works dealing with automatic line matching have
been proposed for standard perspective cameras and can be
divided into two categories: those that match individual line
segments; and those that match groups of line segments.
Individual line segments are generally matched on their
geometric attributes (e.g. orientation, length, extent of
overlap) (see [Medioni85], [Ayache90], [Zhang94]). Some
such as [Crowley90], [Deriche90], [Huttenlocher93] use
a nearest line strategy which is better suited to image
tracking where the images and extracted segments are similar.
Matching groups of line segments has the advantage that
more geometric information is available for disambiguation.
A number of methods have been developed around the idea
of graph-matching (see [Ayache87], [Horaud89], [Gros95],
[Venkateswar95]). The graph captures relationships such as
“left of”, “right of”, cycles, “collinear with” etc, as well
as topological connectedness. Although such methods can
cope with more significant camera motion, they often have a
high complexity and again they are sensitive to error in the
segmentation process.

Besides these methods, other approaches to individual line
matching exist, which use some similarity measure commonly
used in template matching and image registration (e.g. Sum
of Squared Differences (SSD), simple or Normalized Cross-
Correlation (NCC), image histograms (see [Gonzalez02])).
An interesting approach was proposed in [Baillard99]. Besides
using the topological information of the line, the authors
also used the photometric neighborhood of the line for
disambiguation. Epipolar geometry was then used to provide
a point to point correspondence on putatively matched line
segments over two images and the similarity of the lines
neighborhoods was then assessed by cross-correlation at the
corresponding points.

A novel approach, using the intensity profile along the line
segment, was proposed in [Tell00]. Although the application
of the method was to wide baseline point matching, the
authors used the intensity profile between two distinct points
(i.e. a line segment) to build a distinctive descriptor. The
descriptor is based on affine invariant Fourier coefficients

that are directly computed from the intensity profile. Another
approach designed for wide baseline point matching on
affine invariant regions was also proposed in [Goedeme04]
and is application on robot localization with omnidirectional
imaging was demonstrated in [Sagues06].

The methods cited above were defined for perspective
images but the same concepts have been also used by
roboticians in omnidirectional images under certain
circumstances. The use of omnidirectional vision even
facilitated the task because of the360◦ field of view (see
[Yagi91], [Brassart00], [Prasser04]). However, to match
vertical lines among different frames only mutual and
topological relations have been used (e.g. neighborhood or
ordering constraints) sometimes along with some of the
similarity measures cited above (e.g. SSD, NCC).

Finally, another important issue to be addressed when using
a vision sensor in mobile robotics is the extrinsic calibration
of the camera with respect to the robot odometry, i.e. the
estimation of the parameters characterizing the transforma-
tion between the two references attached respectively on the
robot (robot origin) and on the vision sensor. When a given
task is performed by fusing vision and odometry data, the
performance will depend on this calibration. The problem
of sensor-to-sensor calibration in robotics has recently re-
ceived significant attention and a number of approaches have
been developed (e.g., for IMU-camera [Mirzaei07], robot-
body camera [Hesch08], or laser scanner-camera [Zhang04],
[Scaramuzza07b]). However, very little attention has been
devoted to determining the odometry-camera transformation.
This is necessary in order to correctly fuse visual information
and dead-reckoning in robot localization and mapping. In
this paper, we focus on auto-calibration, that is, without user
intervention.

C. Outline

This paper proposes two contributions. In the first part of
the paper, we describe how we build our robust descriptor for
vertical lines. We show that the descriptor is very distinctive
and is invariant to rotation and slight changes of illumination.

In the second part of the paper, we introduce a strategy
based on the Extended Kalman Filter (EKF) to perform
automatically the estimation of the extrinsic parameters of
the omnidirectional camera during the robot motion. The
strategy is theoretically validated through an observability
analysis which takes into account the system nonlinearities.
In particular, it is theoretically shown that only one feature
suffices to perform the calibration.
This paper extends our two previous works [Scaramuzza07]
and [Martinelli06].

The present document is organized as follows. First, we
describe our procedure to extract vertical lines (Section II)
and build the feature descriptor (Section III). In Section IV
we provide our matching rules while in Sections V and VI we
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characterize the performance of the descriptor. In SectionVII,
we describe the calibration problem, while in Section VIII we
provide the equations to build the EKF. In Section IX, we will
present experimental results which validate both the theoretical
contributions.

Fig. 1. The robot used in our experimets equipped with encodersensors,
omnidirectional camera, and two laser range finders

II. V ERTICAL L INE EXTRACTION

Our platform consists of a wheeled robot equipped with a
catadioptric omnidirectional camera (see Fig. 1). The main
advantage of such kind of camera is that it provides a 360◦

field of view in the azimuth plane. In our arrangement, we
set the camera-mirror system perpendicular to the floor where
the robot moves. This setting guarantees that all vertical lines
are mapped to radial lines on the camera image plane (Fig. 2)
In this section, we detail our procedure to extract prominent
vertical lines. Our procedure consists of five steps.

The first step toward vertical line extraction is the detection
of the image center (i.e. the point where all radial lines
intersect in). As the circular external boundary of the mirror
is visible in the image, we used a circle detector to determine
the coordinates of the center. Note that because the diameter
of the external boundary is known and does not change
dramatically during the motion, the detection of the center
can be done very efficiently and with high accuracy on
every frame (this guarantees to cope also with the vibrations
of the platform). The circle detection algorithm works in
the following way: first, the radius of the circle has to be
computed from a static image. Then, for each frame we use

a circular mask (the same radius of the circle to be detected)
which is convolved with the binary edge image. The output of
this convolution is an accumulator matrix where the position
of the maximum coincides with the position of the circle
center.

The second step is the computation of the image gradients.
We compute the two componentsIx, Iy of the image gradient
by convolving the input imageI with the two 3 × 3 Sobel
masks. FromIx, Iy, we can calculate the magnitudeM and
the orientationΦ of the gradients as

M =

√

Ix
2 + Iy

2, Φ = atan(Iy/Ix). (1)

Then, we do a thresholding onM, Φ by retaining those
vectors whose orientation looks towards (or away from) the
image center up to±5◦. This 10◦ tolerance allows us to
handle the effects of floor irregularities on the appearanceof
vertical lines. After this thresholding, we apply edge thinning
and we obtain the binary edge map depicted in Fig. 3.

The third step consists in detecting the most reliable
vertical lines. To this end, we divide the omnidirectional
image into 720 predefined uniform sectors, which give us an
angular resolution of 0.5◦. By summing up all binary pixels
that vote for the same sector, we obtain the histogram shown
in Fig. 4. Then, we apply non-maxima suppression to identify
all local peaks.

The final step is histogram thresholding. As observed in
Fig. 3, there are many potential vertical lines in structured
environments. In order to keep the most reliable and stable
lines, we put a threshold on the number of pixel of the
observed line. As observed in Fig. 4, we set our threshold
equal to 50% of the maximum allowed line length, i.e.
Rmax − Rmin. An example of vertical lines extracted using
this thresold is shown if Fig. 5.

III. B UILDING THE DESCRIPTOR

In Section IV, we will describe our method for matching
vertical lines between consecutive frames while the robot
is moving. To make the feature correspondence robust to
false positives, each vertical line is given a descriptor which
is very distinctive. Furthermore, this descriptor is invariant
to rotation and slight changes of illumination. In this way,
finding the correspondent of a vertical line can be done by
looking for the line with the closest descriptor. In the next
subsections, we describe how we built our descriptor.

A. Rotation Invariance

Given a radial line, we divide the space around it into three
equal non-overlapping circular areas such that the radiusra
of each area is equal to(Rmax −Rmin)/6 (see Fig. 6).
Then, we smooth each area with a Gaussian window with
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Fig. 2. An image taken by our omnidirectional camera. We used a KAIDAN-
360-One-VR hyperbolic mirror and a SONY CCD camera the resolution of
640480 pixels. The camera used in shown in Fig. 1.
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Fig. 3. Edge image of Fig. 2.
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Fig. 4. Number of binary pixels voting for a given orientationangle.
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Fig. 5. Extraction of the most reliable vertical features from an omnidirec-
tional image.

σG = ra/3 and compute the image gradients (magnitudeM

and orientationΦ) within each of these areas.
Concerning rotation invariance, this is achieved by redefining
the gradient orientationΦ of all points relatively to the radial
line’s angleθ (see Fig. 6).

B. Orientation Histograms

To make the descriptor robust to false matches, we split
each circular area into two parts and consider each one
individually (Fig. 7). In this way, we preserve the information
about what we have on the left and right sides of the feature.

For each side of each circular area, we compute the gradient
orientation histogram (Fig. 8). The whole orientation space
(from -π to π) is divided intoNb equally spaced bins. In
order to decide how much of a certain gradient magnitudem
belongs to the adjacent inferior binb and how much to the
adjacent superior bin, each magnitudem is weighted by the
factor (1 − w), where

w = Nb
ϕ− b

2π
, (2)

with ϕ being the observed gradient orientation in radians.
Thus,m(1 − w) will vote for the adjacent inferior bin, while
mw will vote for the adjacent superior bin.

According to what we mentioned so far, each bin contains
the sum of the weighted gradient magnitudes which belong to
the correspondent orientation interval. We observed that this
weighted sum made the orientation histogram more robust to
image noise. Finally, observe that the orientation histogram is
already rotation invariant because the gradient orientation has
been redefined relatively to the radial line’s angle (Section
III-A).
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Fig. 6. Extraction of the circular areas. To achieve rotation invariance, the
gradient orientationΦ of all points is redefined relatively to the radial line’s
angleθ.

Fig. 7. The two sections of a circular area.

To recap, in the end we have three pairs of orientation
histograms:

H1 = [H1,L,H1,R]

H2 = [H2,L,H2,R]

H3 = [H3,L,H3,R]

(3)

where subscripts L, R identify respectively the left and right
section of each circular area.

C. Building the Feature Descriptor

From the computed orientation histograms, we build the
final feature descriptor by stacking all three histogram pairs
as follows:

H = [H1,H2,H3] (4)

To have slight illumination invariance, we pre-normalize each
histogramHi to have unit length. This choice relies on the
hypothesis that the image intensity changes linearly with
illumination. However, non-linear illumination changes can
also occur due to camera saturation or due to illumination
changes that affect 3D surfaces with different orientations by
different amounts. These effects can cause a large change
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Fig. 8. An example of gradient orientation histograms for the left and right
sides of a circular area.

in relative magnitude for some gradients, but are less likely
to affect the gradient orientations. Therefore, we reduce the
influence of large gradient magnitudes by clipping the values
in each unit histogram vector so that each bin is no larger than
0.1, and then renormalizing to unit length. This means that
matching the magnitudes for large gradients is no longer as
important, and that the distribution of orientations has greater
emphasis. The value 0.1 was determined experimentally and
will be justified in Section VI.

To recap, our descriptor is anN -element vector containing
the gradient orientation histograms of the circular areas.In our
setup, we extract 3 circular areas from each vertical feature
and use 32 bins for each histogram; thus the length of the
descriptor is

N = 3areas · 2parts · 32bins = 192 (5)

Observe that all feature descriptors are the same length.

IV. FEATURE MATCHING

As every vertical feature has its own descriptor, its
correspondent in consecutive images can be searched among
the features with the closest descriptor. To this end, we need
to define a dissimilarity measure (i.e. distance) between two
descriptors.

In the literature, several measures have been proposed for
the dissimilarity between two histogramsH = {hi} and
K = {ki}. These measures can be divided into two categories.
The bin-by-bin dissimilarity measures only compare contents
of corresponding histogram bins, that is, they comparehi
and ki for all i, but nothi and ki for i 6= j. The cross-bin
measures also contain terms that compare non-corresponding
bins. Among the bin-by-bin dissimilarity measures, fall
the Minkoski-form distance, the Jeffrey divergence, theχ2

statistics, and the Bhattacharya distance. Among thecross-bin
measures, one of the most used is the Quadratic-form
distance. An exhaustive review of all these methods can be
found in [Bhattacharya05], [Rubner00], [Rubner01].
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In our work, we tried the dissimilarity measures mentioned
above but the best results were obtained using theL2 dis-
tance (i.e. Euclidean distance) that is a particular case ofthe
Minkoski-form distance. Therefore, in our experiments we
used the Euclidean distance as a measure of the dissimilarity
between descriptors, which is defined as:

d(H,K) =

√

√

√

√

N
∑

i=1

|hi − ki|2 (6)

By definition of distance, the correspondent of a feature,
in the observed image, is expected to be the one, in the
consecutive image, with the minimum distance. However, if a
feature is no longer present in the next image, there will be a
closest feature anyway. For this reason, we defined three tests
to decide whether a feature correspondent exists and which
one the correspondent is. Before describing these tests, let us
introduce some definitions.

Let {A1,A2, . . . ,ANA
} and {B1,B2, . . . ,BNB

} be two
sets of feature descriptors extracted at timetA andtB respec-
tively, whereNA, NB are the number of features in the first
and second image.
Then, let

Di = {d(Ai,Bj), j = 1, 2, . . . , NB)} (7)

be the set of all distances between a givenAi and all Bj

(j = 1, 2, · · · , NB).
Finally, let minDi = mini (Di) be the minimum of the
distances between givenAi and all Bj and SminDi the
distance to the second closest descriptor.

A. Test 1

The first test checks that the distance from the closest
descriptor is smaller than a given threshold, that is:

minDi ≤ F1. (8)

By this criterion, we actually set a bound on the maximum
acceptable distance to the closest descriptor.

B. Test 2

The second test checks that the distance from the closest
descriptor is smaller than the mean of the distances from all
other descriptors, that is:

minDi ≤ F2· < Di > (9)

where< Di > is the mean value ofDi andF2 clearly ranges
from 0 to 1. This criterion comes out of experimental results.

TABLE I
THE DISTANCES BETWEEN THE DESCRIPTORA1 AT TIME tA AND ALL

DESCRIPTORSBj , j = 1, 2, .., NB AT TIME tB

B1 B2 B3 B4 B5
0.57 0.72 0.74 0.78 0.83

TABLE II
THE PARAMETERS USED BY OUR ALGORITHM WITH THEIR EMPIRICAL

VALUES

F1 = 1.05 F2 = 0.75 F3 = 0.8

C. Test 3

Finally, the third test checks that the distance from the
closest descriptor is smaller than the distance from the second
closest descriptorSminDi:

minDi ≤ F3 · SminDi, (10)

whereF3 clearly ranges from 0 to 1. As in the previous test,
the third test raises from the observation that, if the correct
correspondence exists, then there must be a big gap between
the closest and the second closest descriptor.

In Table I, we show an example of real comparison among
the distances between descriptorA1 at time tA and all
descriptorsBj at time tB . Observe that descriptorB1 is not
the correct correspondent ofA1. In fact, it passes test 1 and
3 but not 2.

FactorsF1, F2, F3 were determined experimentally. The
values used in our experiments are shown in Table II. The
choice of these values will be motivated in Section VI.

V. COMPARISON WITH OTHERIMAGE SIMILARITY

MEASURES

A good method to evaluate the distinctiveness of the descrip-
tors in the observed image is to compute a similarity matrix
S where each elementS(i, j) contains the distance between
the ith andjth descriptor. That is,

S(i, j) = d(Hi,Hj), (11)

whereHi is the descriptor of theith radial line and distance
d is defined as in (6). Observe that to build this matrix we
compute the radial line’s descriptor for everyθ ∈ [0◦, 360◦].
We used aθ increment of1◦ and thusi = 1, 2, . . . , 360.
Furthermore, note thatS is symmetric and thatS(i, j) = 0
for i = j. The similarity matrix computed for the image of

50 100 150 200 250 300 350
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Fig. 9. This is the same image of Fig. 6 after unwrapping into a cylindrical
panorama. The rectangular region used to compute SSD and ZNCC is also
shown.
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Fig. 10. Similarity matrix for descriptors.
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Fig. 11. Similarity matrix for SSD.
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Fig. 12. Similarity matrix for ZNCC.

Fig. 6 is shown in Fig. 10.

In this section, we want to compare our descriptor with
other two image similarity measures that are well known in
image registration and are also commonly used for matching
individual lines. These are Sum of Squared Differences (SSD)
and Zero mean Normalized Cross-Correlation (ZNCC) (their
definitions can be found in [Gonzalez02]). When using SSD
and ZNCC for comparing two patterns, the pattern descriptor
can be seen as the pattern intensity. In our case, we take as a
pattern the rectangular region around the observed radial line
as shown in Fig. 9. As we did to build the similarity matrix for
our descriptors, we compare given patternPi with patternPj

using either SSD or ZNCC and build the respective similarity
matrices, that is:

SSSD(i, j) = SSD(Pi,Pj), (12)

SZNCC(i, j) = ZNCC(Pi,Pj), (13)

The two similarity matrices for the image in Fig. 6 are shown
in Fig. 11 and 12. Concerning the sizewin of the patterns for
computing SSD and ZNCC, we chosewin = 2ra. Observe
that this choice is reasonable as2ra is also the size (diameter)
of the three circular areas used to build our descriptor.
Furthermore observe that, for SSD, maximum similarity
between two patterns occurs when SSD=0. Conversely,
for ZNNC, maximum similarity (correlation) occurs when
ZNCC=1; however, observe that Fig. 12 has been inverted
to enable comparison with figures 10 and 11 (this means
that black indicates maximum similarity and white minimum
similarity).

To interpret the similarity matrix, consider points along
the diagonal axis in Fig. 10. Each point is perfectly similar
to itself, so all the points on the diagonal are dark. Starting
from a given point on the diagonal, one can compare how its
correspondent descriptor relates to its neighbors forwardand
backward by tracing horizontally or vertically on the matrix.
To compare given descriptorHi with descriptorHi+n, simply
start at point(i, i) on the matrix and trace horizontally to the
right to (i, i+ n).

In the similarity matrix for SSD, one can see large blocks
of dark which indicate that there are repeating patterns in the
image or that the patterns are poorly textured. Rectangular
blocks of dark that occur off the diagonal axis indicate
reoccurring patterns. This can be better understood by
observing Fig. 9. As observed, there are poorly textured
objects and repeating structure.

Similar comments can be done regarding the similarity
matrix for ZNCC. However, observe that the behavior of
ZNCC is better than SSD: first, the size of the blocks along or
off the diagonal axis is smaller; then, points on the diagonal
are much darker than points off the diagonal.

Regarding the similarity matrix of our descriptor the diago-
nal axis is well demarcated, in fact points on the diagonal are
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much darker than those off the diagonal; the contrast with the
regions off the diagonal is higher than ZNCC. Finally, observe
that blocks along or off the diagonal axis are much smaller or
lighter than SSD and ZNCC; this indicates that even on poorly
textured surfaces our descriptor is distinctive enough. This is
mainly due to use of the gradient information and to the fact
of having split the region around the line in three areas instead
of taking the entire region as whole.

VI. PERFORMANCEEVALUATION

In this section, we characterize the performance of our
descriptor on a large image dataset by taking into account
the sensitiveness to different parameters, which are image
saturation, image noise, number of histogram bins, and use
of overlapping circular areas. Furthermore, we also motivate
the choice of the values ofF1, F2, andF3 shown in Table II.

1) Ground truth: To generate the ground truth for testing
our descriptor, we used a database of 850 omnidirectional
pictures that is a subset of the video sequence (1852 images)
used in Section IX-A. First, we extracted verticals lines from
each image. Then we manually labeled all the corresponding
features with the same ID. The images were taken from
the hallway of our department. Figure 21 shows three
sample images from our dataset. The images show that the
illumination conditions vary strongly. Due to big windows,
a mixture of natural and artificial lighting produces difficult
lighting conditions like highlights and specularities.

In the following subsections, we characterize the
performance of our descriptor. We would like to remark that
the features of each image were matched against all the other
images of the dataset where the same features appeared.
Furthermore, the images of our dataset were taken such that
each vertical line could be continuously observed for at least
2 meters of translational motion. This means that the features
were matched also among images with strong baseline (up to
2 meters).

2) Image saturation: As we mentioned in Section III-C,
we limit the values of the histogram vectors to reduce the
influence of image saturation. The percentage of correct
matches for different threshold values is shown in Fig. 13.
The results show the percentage of features that find a correct
match to the single closest neighbor in the entire database.As
the graph shows, the maximum percentage of correct matches
is reached when using a threshold value equal to 0.1. In the
remainder of this paper, we will always use this value.

3) Image noise: The percentage of correct matches
for different amounts of gaussian image noise (from0%
to 10%) is shown in Fig. 14. Again, the results show
the percentage of correct matches found using the single
nearest neighbor in the entire database. As this graph shows,
the descriptor is resistant even to large amounts of pixel noise.
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Fig. 13. Influence of saturation on correct matches.
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Fig. 14. Influence of noise level (%) on correct matches. The correct matches
are found using only the nearest descriptor in the database.

4) Histogram bins and circular areas: There are two
parameters that can be used to vary the complexity of
our descriptor: the number of orientation bins (Nb) in the
histograms and the number of circular areas. Although in
the explanation of the descriptor we used 3 non overlapping
circular areas, we evaluated the effect of using 5 overlapping
areas with50% overlap between two circles. The results
are shown in Fig. 15. As the graph shows, there is a slight
improvement in using 5 overlapping areas (the amelioration
is only 1%). Also, the performance is quite similar using 8,
16, or 32 orientation bins. Following this considerations,the
best choice would seem to use 3 areas and 8 histogram bins
in order to reduce the dimension of the descriptor. However,
we chose to use 32 orientation bins. For 32 bins, in fact, we
had the biggest separation between the probability density
functions of correct and incorrect matches shown in figures
16, 17, and 18. Finally observe that we considered powers
of 2 due to computational efficiency. The final computation
time of the entire process (feature extraction, descriptor
computation, and matching) took less than 20 ms on a
dual-core laptop computer.

5) Matching rules: Figure 16 shows the Probability
Density Function (PDF) for correct and incorrect matches
in terms of the distance to the closest neighbor of each
keypoint. In our implementation of the first rule, we chose
F1 = 1.05. As observed in the graph, by this choice we reject
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Fig. 16. The probability density function that a match is correct according
to the first rule.

all matches in which the distance to the closest neighbor is
greater than1.05, which eliminates50% of the false matches
while discarding less than5% of correct matches.

Similarly, Fig. 17 shows the PDFs in the terms of the ratio
of closest to average-closest neighbor of each keypoint. In
our implementation of the second rule, we choseF2 = 0.75.
As observed in the graph, by this choice we reject all matches
where the ratio between the closest neighbor distance and
the mean of all other distances is greater than0.75, which
eliminates45% of the false matches while discarding less
than8% of correct matches.

Finally, Fig. 18 shows the PDFs in terms of the ratio of
closest to second-closest neighbor of each keypoint. In our
implementation of the third rule, we choseF3 = 0.8; in
this way we reject all matches in which the distance ratio is
greater than0.8, which eliminates92% of the false matches
while discarding less than10% of correct matches.

VII. C AMERA-ROBOT SELF-CALIBRATION : THE PROBLEM

Accurate extrinsic calibration of a camera with the
odometry system of a mobile robot is a very important
step towards precise robot localization. This stage is usually
poorly documented and is commonly carried out by manually
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Fig. 17. The probability density function that a match is correct according
to the second rule.
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Fig. 18. The probability density function that a match is correct according
to the third rule.

measuring the position of the camera with respect to the
robot frame. In this section, we describe a new method that
uses an EKF to extrinsically and automatically calibrate the
camera while the robot is moving. The approach is similar
to that we presented in [Martinelli06] where just a single
landmark (we used a source of light) was tracked during the
motion to perform calibration. In this section, we extend the
method in [Martinelli06] by providing the EKF equations to
cope with multiple features. The features in use are vertical
features which are extracted and tracked as described in the
previous sections.

In order to simplify the problem, we do the following
assumptions; we assume that the robot is moving in a flat
environment and that it is equipped with an omnidirectional
camera whosez-axis is parallel to thez-axis of the robot, that
is, the mirror axis is perpendicular to the floor. According
to this, the three-dimensional camera-odometry calibration
problem becomes a two-dimensional problem.

Our first goal is the estimation of the three parametersφ,
ρ, ψ which characterize the rigid transformation between the
two references frames attached respectively to the robot and
to the camera (see Fig. 19).
The second goal is to perform calibration automatically and



THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, VOL. 28, ISSUE 2, FEBRUARY, 2009 10

while the robot is moving.
The available data are the robot wheels displacementsδρR
and δρL (see later) delivered by the encoder sensors and the
bearing angle observationsβ of several features in the camera
reference frame (Fig. 19).
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θ
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Fig. 19. The two reference frames respectively attached to the robot and
to the camera. The five parameters estimated by the EKF (D, θ, φ, ρ, ψ) are
also indicated.

As we consider the case of a mobile robot moving in a2D
environment, its configuration is described through the state
XR = [xR, yR, θR]T containing its position and orientation
(as indicated in Fig. 19). Furthermore, we consider the caseof
a robot equipped with a differential drive system. The robot
configurationXR can then be estimated by integrating the
encoder data. In particular, we have:







xRi+1
= xRi

+ δρi cos
(

θRi
+ δθi

2

)

yRi+1
= yRi

+ δρi sin
(

θRi
+ δθi

2

)

θRi+1
= θRi

+ δθi

, (14)

where quantitiesδρ and δθ are related to the displacements
δρR andδρL (respectively of the right and left wheel) directly
provided by the encoders through:

δρ =
δρR + δρL

2
, δθ =

δρR − δρL
e

(15)

wheree is the distance between the wheels.

For a particular bearing angle observationβ, we obtain the
following analytical expression (see Fig. 19):

β = π − ψ − θR − φ+ α (16)

with

α = tan−1

(

yR + ρ sin(θR + φ)

xR + ρ cos(θR + φ)

)

(17)

VIII. EKF B ASED CALIBRATION

An intuitive procedure to determine parametersφ, ρ, ψ
is to use the data from the encoders to estimate the robot
configuration (provided that the initial robot configuration
is known). Then, by measuring the bearing angleβ at
several different robot configurations (at least three), itis
possible to obtain parametersφ, ρ, ψ by solving a non linear
system in three unknowns. However, the drawback of this
method is that, when the robot configuration is estimated
by using only the encoder data, the error integrates over
the path. This means that this procedure can be applied
only for short paths and therefore the achievable accuracy
on the estimation ofφ, ρ, ψ is limited. Furthermore, the
initial robot configuration has to be known with high accuracy.

One way to overcome these problems is to integrate the
encoder data with the bearing angle measurements to estimate
the robot configuration. This can be done by introducing an
augmented stateXa containing the robot configuration and the
calibration parametersφ, ρ, ψ:

Xa = [xR, yR, θR, φ, ρ, ψ]T (18)

An EKF can be adopted to estimate the stateXa. The inputs
u of the dynamics of this state are directly provided by the
encoder data and the observationsz are the bearing angles
provided by the vision sensor. However, as it was pointed
out in [Martinelli06], by considering the system stateXa as
defined in (18) the system is not observable, that is, it does not
contain all the necessary information to perform the estimation
with an error which is bounded. Conversely, in [Martinelli06]
it was proved that the system becomes observable if, instead
of consideringXa, we introduce a new stateX defined as
follows:

X = [D, θ, φ, ρ, ψ]T , (19)

with D =
√

x2
R + y2

R and θ = θR − tan−1
(

yR

xR

)

(see Fig.
19). Note also thatD is the distance from the observed feature.

Observe that, without loss of generality, we can use
X instead of Xa. In fact, Xa contains the whole robot
configuration whose estimation is not our goal, indeed we
just want to estimate parametersφ, ρ, ψ.

A. Observability Properties with Respect to the Robot Trajec-
tory

In control theory, a system is defined observable when it
is possible to reconstruct its initial state by knowing, in a
given time interval, the control inputs and the outputs (see
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[Isidori95]). The observability property has a very practical
meaning. When a system is observable it contains all the
necessary information to perform the estimation with an error
which is bounded (see [Isidori95]).

In this section, we investigate the observability properties
for the stateX with respect to the robot trajectories. Our
analysis takes into account the system non-linearities. Indeed,
the observability analysis changes dramatically from linear
to nonlinear systems (see [Isidori95]). First of all, in the
nonlinear case, the observability is a local property. For
this reason, in a nonlinear case the concept of thelocal
distinguishability property was introduced by Hermann and
Krener (see [Hermann77]). The same authors introduced also
a criteria, the observability rank condition, to verify if a
system has this property. This criteria plays a very important
role since in many cases a nonlinear system, whose associated
linearized system is not observable, has however the local
distinguishability property. Note that it is the distinguishability
property which implies that the system contains the necessary
information to have a bounded estimation error (actually,
provided that the locality is large enough with respect to the
sensor accuracy).

The dynamics of our system is described through the
following equations:







Ḋ = v cos θ

θ̇ = ω − v
D sin θ

φ̇ = ρ̇ = ψ̇ = 0

(20)

Our system is affine in the input variables, i.e. the previous
equations can be written in the following compact form:

Ẋ = f(X,u) =

M
∑

k=1

fk(X)uk (21)

whereM is the number of the input controls (which are
independent). In our caseM = 2 and the controls areu1 = v,
u2 = ω and

f1 =

[

cos θ,−
sin θ

D
, 0, 0, 0

]T

f2 = [0, 1, 0, 0, 0]
T (22)

The observation is defined by the equation

βi = tan−1

(

−ρi sin(θi + φi)

−Di − ρi cos(θi + φi)

)

− θi−φi−ψi. (23)

We now want to remind some concepts in the theory
by Hermann and Krener in [Hermann77]. We will adopt
the following notation. We indicate theKth order Lie
derivative of a fieldΛ along the vector fieldsvi1 , vi2 , ..., viK
with LKvi1

,vi2
,...,viK

Λ. Note that the Lie derivative is not
commutative. In particular, inLKvi1

,vi2
,...,viK

Λ it is assumed
to differentiate alongvi1 first and alongviK at the end.
Let us indicate withΩ the space spanned by all the Lie
derivativesLKfi1

,fi2
,...,fiK

h(X)|t=0 (i1, ..., iK = 1, 2, ...,M
and the functionsfij are defined in (22)).

Furthermore, we denote withdΩ the space spanned by the
gradients of the elements ofΩ.

In this notation, the observability rank condition can
be expressed in the following way:The dimension of the
observable sub-system at a given X0 is equal to the dimension
of dΩ.

In [Martinelli06] it was shown that the stateX satisfying the
dynamics in (20) is observable when the observation is the one
given in (23). Here we want to investigate the observability
properties depending on the robot trajectory. In particular, we
will consider separately the case of straight motion and pure
rotations about the robot origin. Furthermore, we will consider
separately the case when the observed feature is far from the
robot and the case when it is close. Before considering the
mentioned cases separately we observe thatβ depends onX
through the ratioλ ≡ D

ρ and the sumγ ≡ θ + φ:

β = atan

(

sin γ

λ+ cos γ

)

− γ − ψ (24)

The case of far feature and close feature corresponds
respectively to haveλ >> 1 and λ ∼ 1. In the first case
the expression ofβ can be approximated with:

β ∼= −θ − φ− ψ (25)

1) Pure Rotations and far feature: This motion is obtained
by setting u1 = 0. Hence, the Lie derivatives must be
calculated only along the vectorf2. The observation is the
one given in (25). It is easy to realize that the dimension of
dΩ is 1 (the first order Lie derivative is equal to -1, i.e. is a
constant). This result is intuitive: the observation in (25) does
not provide any information onD andρ and it is not able to
distinguish amongθ, φ andψ. Furthermore, the pure rotation
does not provide any additional information. Hence, it is only
possible to observe the sumθ + φ+ ψ.

2) Straight motion and far feature: This motion is obtained
by setting u2 = 0. Hence, the Lie derivatives must be
calculated only along the vectorf1. We note thatf1 depends
only on θ andD. Furthermore,β = −θ − η (having defined
η ≡ φ+ψ). Hence, the best we can hope is that the following
quantities are observable:D, θ, η. In the Appendix we show
that this is the case.

3) Pure Rotation and close feature: Let us consider the
stateXλ ≡ [λ, γ, φ, ρ, ψ]T . When Ẋ = ωf2 we haveẊλ =
ωf2. On the other hand,f2 is independent ofXλ. Furthermore,
the expression in (24) depends only onλ, γ and ψ. Hence,
the best we can hope is that are observable the quantities:λ,
γ andψ. In the Appendix we show that this is the case.

4) Straight motion and close feature: This is the hardest
case. A priori, it is not possible to exclude that the entire
stateX is observable. However, a direct computation of the
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dimension ofdΩ (see the Appendix) shows that this dimension
is smaller than5, meaning thatX is not observable.

We conclude this section with the following important
remark. It is possible to estimate the parametersφ, ρ and
ψ by combining a straight motion far from the feature with
pure rotations close to the feature. Indeed, by performing the
first trajectory it is possible to observe the sumφ + ψ, D
and θ. Once the robot starts to rotate,D does not change.
Furthermore, the sumφ + ψ is time independent. On the
other hand, with the pure rotationλ, γ, andψ are observable.
Therefore, from the values ofλ and D it is possible to
determineρ, and fromψ and the sumφ + ψ it is possible
to determineφ.

B. The Filter Equations

By usingD, θ, and Equation (14), we obtain the following
dynamics for the stateX:























Di+1 = Di + δρi cos θi
θi+1 = θi + δθi −

δρi

Di
sin θi

φi+1 = φi
ρi+1 = ρi
ψi+1 = ψi

(26)

where, from now on, subscripti will be used to indicate the
time.

Similarly, the bearing angle observationsβi (16) can be read
as:

βi = tan−1

(

−ρi sin(θi + φi)

−Di − ρi cos(θi + φi)

)

− θi − φi − ψi (27)

Observe that so far we have taken into account only the
observation of a single feature. Because we want to cope with
multiple features, we need to extend the definition ofX (19)
as follows:

X = [D1, θ1,D2, θ2, . . . ,DZ , θZ , φ, ρ, ψ]T , (28)

where the superscript identifies the observed feature andZ is
the number of features.

Before implementing the EKF, we need to compute the
dynamics functionf and the observation functionh, both
depending on the stateX. From (26) and using (28), the
dynamicsf of the system can be written as:

Xi+1 = f (Xi,ui) =

























































D1
i + δρi cos θ1i

θ1i + δθi −
δρi

D1
i

sin θ1i

D2
i + δρi cos θ2i

θ2i + δθi −
δρi

D2
i

sin θ2i

...

DZ
i + δρi cos θZi

θZi + δθi −
δρi

DZ
i

sin θZi

φi

ρi

ψi

























































(29)

with u = [δρR, δρL]T .
Regarding the observation functionh, from (27) we have:

h (Xi) =













β1
i

β2
i
...
βZi













=

=



















tan−1
(

−ρi sin(θ1i +φi)

−D1
i
−ρi cos(θ1

i
+φi)

)

− θ1i − φi − ψi

tan−1
(

−ρi sin(θ2i +φi)

−D2
i
−ρi cos(θ2

i
+φi)

)

− θ2i − φi − ψi
...

tan−1
(

−ρi sin(θZ
i +φi)

−DZ
i
−ρi cos(θZ

i
+φi)

)

− θZi − φi − ψi



















(30)

The previous equations, along with a statistical error model
of the odometry (we used the one by Chong and Kleeman
[Chong97]), allow us to implement an EKF to estimateX.
In order to implement the standard equations of the EKF, we
need to compute the JacobiansFx and Fu of the dynamics
(29) with respect to the stateX and with respect to encoder
readings (δρR and δρL). Furthermore, we need to compute
the JacobianH of the observation function (30) with respect
to X. These matrices are required to implement the EKF (see
[Bar-Shalom88]) and are given in the Appendix.

Finally, to make the method robust with respect to the
system non linearities, we inflate the covariance matrix charac-
terizing the non systematic odometry error. As in the Chong-
Kleeman model (see [Chong97]), it is assumed that the true
distance traveled by each wheel during a given time step is
a Gaussian random variable. In particular, it is assumed that
its mean value is the one returned by the wheel encoder and
the variance increases linearly with the absolute value of the
traveled distance.

δρR/L = N(δρeR/L,Kδρ
e
R/L) (31)
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where the index R and L stand respectively for the right
and left wheel, the apex e indicates the value returned by
the encoder andK is a parameter characterizing the non
systematic error whose value is needed to implement the filter.
In order to inflate this error, we adopt a value forK increased
by a factor5 with respect to the one estimated by previous
experiments (see [Martinelli07]).

IX. EXPERIMENTAL RESULTS

In our experiments, we adopted a mobile robot with a differ-
ential drive system endowed of encoder sensors on the wheels.
Furthermore, we equipped the robot with an omnidirectional
camera consisting of a KAIDAN 360 One VR hyperbolic
mirror and a SONY CCD camera the resolution of640× 480
pixels. A picture of our platform is depicted in Fig. 1. Finally,
observe that the entire algorithm ran in real-time. In particular,
the all process (image capture, feature extraction, description
computation, feature matching) could be computed in less than
20 ms on a dual-core laptop computer.

A. Results on feature tracking by using the proposed descrip-
tor

In this section, we show the performance of our feature
extraction and matching method by capturing pictures from
our robot in a real indoor environment. Furthermore, we
show that the parameters of the descriptor generalize also
outside of the chosen dataset used for “learning” in SectionVI.

The robot was moving at about0.15 m/s and was
acquiring frames at3 Hz, meaning that during straight paths
the traveled distance between two consecutive frames was
5 cm. The robot was moved in the hallway of our institute
along the path shown in Fig. 20. 1852 frames were extracted
during the whole path. Figure 21 shows three sample images
from the dataset. The images show that the illuminations
conditions vary strongly.

The result of feature tracking is shown only for the first 150
frames in Fig. 22. The video sequence from where this graph
was generated can be found in the multimedia extension of
this paper (Appendix A). In the video, every vertical line
is labeled with the corresponding number and color with
which it appears in Fig. 22. The graph shown in Fig. 22 was
obtained using only the three matching rules described in
Sections IV-A, IV-B, IV-C. No other constraint, like mutual
and topological relations, has been used. This plot refers to a
short path of the whole trajectory while the robot was moving
straight (between frame no. 0 and 46), then doing a180◦

rotation (between frame no. 46 and 106), and moving straight
again. As observed, most of the features are correctly tracked
over the time. Indeed, most of the lines appear smooth and
homogeneous. The lines are used to connect features that
belong to the same track. When a new feature is detected,
this feature is given a label with progressive numbering and
a new line (i.e. track) starts from it. In this graph, there are
three false matches that occur at the points where two tracks
intersect (e.g. at the intersection between tracks no. 1 and58,

Fig. 20. Floorplan of the institute showing the robot path (in red).

between track no. 84 and 86, and between track no. 65 and
69). Observe that the three huge jumps in the graph are not
false matches; they are only due to the angle transition from
−π to π.

Observe that our method was able to match features even
when their correspondents were not found in the previous
frames. This can be seen by observing that sometimes circles
are missing on the tracks (look for instance at track no.
52). When a correspondence is not found in the previous
frame, our tracking algorithm starts looking into all previous
frames (actually up to twenty frames back) and stops when a
correspondence is found.

By examining the graph, one can see that some tracks are
suddenly given different numbers. For instance, observe that
feature no. 1 - that is the first detected feature and starts at
frame no. 0 - is correctly tracked until frame no. 120 and is
then labeled as feature no. 75. This is because at this frame no
correspondence was found and then the feature was labeled
as a new entry (but in fact is a false new entry). Another
example is feature no. 15 that is then labeled as no. 18 and
no. 26. By a careful visual inspection, one can find only a
few other examples of false new entries. Indeed, tracks that
at a first glance seem to be given different numbers, belong
in fact to other features that are very close to the observed one.

After visually inspecting every single frame of the whole
video sequence (composed of 1852 frames), we found 35 false
matches and 101 false new entries. The detection rate over the
entire dataset is shown in Table III at intervals of 200 frames.
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Fig. 22. Feature tracking during the motion of the robot. Iny-axis is the angle of sight of each feature and in thex-axis the frame number. Each circle
represents a feature detected in the observed frame. Lines represent tracked features. Numbers appear only when a new feature is detected. This plot corresponds
to the video contained in the multimedia extension of this paper (see Appendix A).

TABLE III
RECOGNITION RATE

Frame Number Rate of Rate of Rate of
interval of matches correct false false

matches (%) matches (%) new entries (%)
0-200 735 97.48 0.53 1.98

200-400 972 98.58 0.20 1.22
400-600 823 98.68 0.35 0.96
600-800 857 97.83 0.80 1.37
800-1000 685 98.13 0.57 1.29
1000-1200 740 98.40 0.26 1.33
1200-1400 906 98.26 0.43 1.30
1400-1600 784 97.75 0.62 1.62
1600-1852 771 98.34 0.76 1.89

Comparing these errors to the 7408 corresponding pairs
detected by the algorithm over the whole video sequence, we
had 1.8% of mismatches. Furthermore, we found that false
matches occurred every time the camera was facing objects
with repetitive texture (like in Fig 9 or in the second image
of Fig. 21). Thus, ambiguity was caused by the presence of
vertical elements which repeat almost identical in the same
image. On the other hand, a few false new entries occurred

when the displacement of the robot between two successive
images was too large. However, observe that when a feature
matches with no other feature in previous frames, it is better
to believe this feature to be new than commit a false matching.

As we already mentioned above, the results reported in
this section were obtained using only the three matching
rules described in Sections IV-A, IV-B, IV-C. Obviously, the
performance of tracking could be further improved by adding
other constraints like mutual and topological relations among
features.

B. Calibration Results

In our experiments, we adopted the same mobile robot
and omnidirectional camera described in Section IX-A.
Furthermore, two laser range finders (model SICK LMS 200)
were also installed on the robot. Observe that these laser
scanners are used in our experiments just for comparison and
are considered already calibrated with the odometry system
according to the specifications provided by the manufacturer.
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Fig. 21. Omnidirectional images taken at different locations.

For our experiments, we positioned the omnidirectional
camera on our robot as in Fig. 1 and we measured manually
its position relative to the robot. We measured the following
values:φ ≃ 0 rad, ρ ≃ 0.2 m, ψ ≃ 0 rad. Figure 23 shows
the laser points reprojected onto the omnidirectional image
using the above values. As observed, because the relative
pose of the camera and the robot references is not accurately
measured, the edges in the omnidirectional image do not
correctly intersect the corners of the laser scan. However,we
used these rough values to initialize our EKF.

The trajectory chosen for the experiments consisted of a
straight path, approximately2.3 m long, and a180◦ rotation
about the center of the wheels. The trajectory is depicted infig.
25. For this experiments, about ten vertical lines were tracked.

The values ofφ, ρ, ψ estimated during the motion are
plotted as a function of the frame number in Fig. 26. The
covariancesσφ, σρ, σψ are also plotted. Observe that after
about 60 frames (corresponding to about2.3 m of navigation)
the parameters start suddenly to converge to a stable value.

Fig. 23. Laser points reprojected onto the omnidirectional image before
calibration. The edges in the omnidirectional image do not correctly intersect
the corners of the laser scan.

Fig. 24. Laser points reprojected onto the omnidirectional image after
calibration. The edges in the omnidirectional image appropriately intersect
the corners of the laser scan.

The resulting estimated parameters areφ = −0.34rad,
ρ = 0.23m and ψ = 0.33rad. The sudden jump starting at
frame no. 60 actually occurs when the robot starts to rotate.

As demonstrated in section VIII-A, when the robot accom-
plishes a straight trajectory far from the feature, it is possible
to observe the sumφ + ψ, D, and θ. Once the robot starts
to rotate,D does not change. Furthermore, the sumφ+ ψ is
time independent. On the other hand, with the pure rotation
λ, γ and ψ are observable. Therefore, as the robot starts to
rotate the value ofρ is determined from the values ofλ andD.
Furthermore, bothφ andψ are determined. Note that during
the jump the sumφ+ψ is constant. As it was already pointed
out in [Martinelli06], the convergence is very fast when the
robot performs trajectories alternating short straight paths and
pure rotations about the robot origin.

Furthermore, extensive simulations in [martinelli06], show
that even when the estimation process starts by firstly moving
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Fig. 25. The path performed by the robot during self-calibration, i.e. straight
path followed by a rotation.

the robot along a straight path (i.e. during this initial phase
the overall state is unobservable) the EKF is always able to
recover, at the end, the true values of the parameters. Several
experiments and many simulations showed consistency among
the results.

Fig. 24 shows the laser points reprojected onto the
omnidirectional after calibration. As observed, the calibration
parameters are well estimated. Indeed, the edges in the
omnidirectional image appropriately intersect the corners of
the laser scan.

X. CONCLUSION

In this paper, we presented a robust method for matching
vertical lines among omnidirectional images. Furthermore,
in order to make such a method usable in the framework of
indoor mobile robotics, we introduced a new simple strategy
to extrinsically self-calibrating the omnidirectional sensor
with the odometry reference system.

Concerning the first part, the basic idea to achieve robust
feature matching consists in creating a descriptor which is
very distinctive. Furthermore, this descriptor is invariant to
rotation and slight changes of illumination. The performance
of the descriptor was validated through a deep analysis
and an experiment of feature tracking was also carried
out. The performance of tracking was very good as many
features were correctly detected and tracked over long time.
Furthermore, because the results were obtained using only
the three matching rules described in Section IV, we expect
that the performance would be notably improved by adding
other constraints like mutual and topological relations among
features.

Concerning the second part, we adopted the visual
tracking method to implement our strategy of camera-robot
self-calibration. The novelty of the method is the use of
an extended Kalman filter that automatically estimates the
calibration parameters while the robot is moving. The present
strategy had been already proposed in our previous work (see
[Martinelli06]). In [Martinelli06], we provided the equations

and performed several experiments on both simulated and
real data by tracking only a single feature. In that work, we
also showed that by choosing suitable trajectories (alternating
straight path with pure rotations), it is possible to estimate
the calibration parameters with high accuracy by moving the
robot along very short paths (few meters). In this paper, we
extended our previous work to cope with multiple features and
showed that by tracking multiple features the convergence is
faster than using a single feature. Furthermore, the calibration
parameters start to converge when the robot undergoes a pure
rotation after straight path. Although experiments have been
conducted using an omnidirectional camera, more in general
the proposed method can be adopted to calibrate any robot
bearing sensor.

The two contributions introduced in this paper allow using
omnidirectional camera in the framework of mobile robotics,
in particular in combination with odometry data.
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APPENDIX A

INDEX TO MULTIMEDIA EXTENSIONS

The multimedia extensions to this article are at:
http://www.ijrr.org. The video corresponds to the plot reported
in Fig. 22.

TABLE IV
MULTIMEDIA EXTENSION

Extension Type Description
1 Video Feature tracking

APPENDIX B

STRAIGHT MOTION AND FAR FEATURE

We want to prove that the stateXsf ≡ [D, θ, η]T satisfying
the dynamics:Ẋsf = vf with f = [cos θ,− sinθ

D , 0]T is
observable when the observation isβ = −θ − η.

It is sufficient to show that the gradientsdL0β, dL1
fβ,

dL2
ffβ are independent.
We have:

L0β = β = −θ − η
dL0β = [0,−1,−1]
L1
fβ = sinθ

D

dL1
fβ = [− sinθ

D2 ,
cos θ
D , 0]

L2
ffβ = − sin2θ

D2

dL2
ffβ = [2 sin2θ

D3 ,−2 cos 2θ
D2 , 0]

The determinant of the matrix containing these gradients is:

det





dL0β
dL1

fβ

dL2
ffβ



 = 2
sinθ

D4

which is different from zero whenθ 6= nπ

PURE ROTATION AND CLOSE FEATURE

We want to prove that the stateXrc ≡ [λ, γ, ψ]T satisfying
the dynamics:Ẋrc = ωf with f = [0, 1, 0]T is observable

when the observation isβ = atan
(

sinγ
λ+cos γ

)

− γ − ψ.

It is sufficient to show that the gradientsdL0β, dL1
fβ,

dL2
ffβ are independent. By directly computing these gradients

we finally obtain:

det





dL0β
dL1

fβ

dL2
ffβ



 = −
λ(λ2 − 1)

(λ2 + 2λ cos γ + 1)3

By assumingλ > 1 (i.e. D > ρ) these gradients are
independent and the observability holds.

STRAIGHT MOTION AND CLOSE FEATURE

The stateX satisfying the dynamics:Ẋ = vf1 with f1
defined in (22) is not observable when the observation is
β = atan

(

sinγ
λ+cos γ

)

− γ − ψ. To prove this we compute the
determinant:

det













dL0β
dL1

f1
β

dL2
f1f1

β

dL3
f1f1f1

β

dL4
f1f1f1f1

β













This computation was performed by using the symbolic tool
of matlab and the result obtained is zero.

JACOBIANS

The JacobiansFx andFu of the dynamics are:

Fx =























A1 0 · · · 0 0 0 0
0 A2 · · · 0 0 0 0
...

... · · ·
...

...
...

...
0 0 · · · AZ 0 0 0
0 0 · · · 0 1 0 0
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1























,
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and

Fu =























B1

B2

...
BZ

0
0
0























with

Ai =

[

1 −δρ sinθi
δρ
Di2 sinθ

i 1 − δρ
Di cos θi

]

,

Bi =

[

cos θi

2
cos θi

2
1
e −

sinθi

2Di − 1
e −

sinθ
2Di

]

The JacobianH of the observations is:

H =











H11 H21 0 0 · · · 0 0 H31 H41 −1
0 0 H12 H22 · · · 0 0 H32 H42 −1
...

...
...

...
...

...
...

...
...

...
0 0 0 0 · · · H1Z H2Z H3Z H4Z −1











with

H1i =
−ρsin(θi + φ)

Di2 + 2ρDi cos(θi + φ) + ρ2
,

H2i =
−Diρ cos(θi + φ) −Di2

Di2 + 2ρDi cos(θi + φ) + ρ2
,

H3i =
−Diρ cos(θi + φ) −Di2

Di2 + 2ρDi cos(θi + φ) + ρ2
,

H4i =
Disin(θi + φ)

Di2 + 2ρDi cos(θi + φ) + ρ2
.


