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Abstract—This paper introduces a robust descriptor for match- B. Previous work
ing vertical lines among two or more images from an omnidirec-
tional camera. Furthermore, in order to make such a descriptor One of the most important problems in vision based
usable in the framework of indoor mobile robotics, this paper gpot navigation systems is the search for correspondences

|ntroduce_s_ a new simple strategy to extrinsically self-calibrate in images taken from different viewpoints. In the last
the omnidirectional sensor with the odometry reference system.
The first part of this paper describes how to build the feature d€cades, the feature correspondence problem has been
descriptor. We show that the descriptor is very distinctive and largely investigated for standard perspective cameras.
is invariant to rotation and slight changes of illumination. The Furthermore, several works have provided robust solutions
robustness of the descriptor is validated through real experimets  for wide-baseline stereo matching, structure from motion,

on a wheeled robot. The second part of the paper is devoted to ) : : : P
the extrinsic self-calibration of the camera with the odometry ego-motion estimation, and robot navigation (see [Maths02

reference system. We show that by implementing an extended [Kadir04], [Mikolajczyk01], [Lowe04], [Mikolajczyk98],
Kalman filter that fuses the information of the visual features [Mikolajczyk02], [Baumberg00], [TuytelaarsO4]). Some of
with the odometry, it is possible to extrinsically and automatically these works normalize the region around each detected
calibrate the camera while the robot is moving. In particular, it feature using a local affine transformation, which attentpts

is theoretically shown that only one feature suffices to perform ., \hensate for the distortion introduced by the perspectiv
the calibration. Experimental results validate the theoretical o . .
contributions. projection. However, such methods cannot be directly adpli

to images taken by omnidirectional imaging devices because
of the non-linear distortions introduced by their largedief
view.

Index Terms—omnidirectional camera, visual tracking, feature
descriptor, extrinsic camera calibration.

In order to apply those methods, one needs first to
generate a perspective view out of the omnidirectional enag
provided that the imaging model is known and that the
omnidirectional camera possesses a single effective dewp

One of the challenges in mobile robotics is designingee [Nayar97]). An application of this approach can be foun
autonomous vehicles able to perform high level tasks [Mauthner06]. There, the authors generate perspective
despite of the quality/cost of the sensors. Vision sensods aviews from each region of interest of the omnidirectional
encoder sensors are in general cheap and suitable for indoaage. This image unwrapping removes the distortions of
navigation. In particular, regarding vision, omnidirectal the omnidirectional imaging device and enables the use
camera is very effective due to the panoramic view from @ state-of-the-art wide-baseline algorithms designed fo
single image. In this paper, we introduce a robust desaripteerspective cameras.
for matching vertical lines among two or more images froevertheless, other researchers have attempted to apply
an omnidirectional camera. Furthermore, in order to make omnidirectional images standard feature detectors and
such a descriptor usable in combination with encoder dataatching techniques which have been traditionally emmloye
we also introduce a new simple strategy to extrinsicalfpr perspective images. In [Micusik06], for instance, the
self-calibrating the omnidirectional sensor with the oétmyp authors check the candidate correspondences between two
reference system. views using RANSAC algorithm.

I. INTRODUCTION

A. Moativation and Contribution

The contributions of the paper are therefore the following Finally, other works have been developed, which extract
two: 1) Introduction of a new descriptor for matching veatic one-dimensional features from new images called Epipolar
lines among two or more images from an omnidirectiong@lane images, under the assumption that the camera is moving
camera; 2) Introduction of a simple strategy to extringycalon a flat surface (see [Briggs06]). These images are gederate
calibrate an omnidirectional camera with the odometryesyst by converting each omnidirectional picture into a 1D ciezul
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image, which is obtained by averaging the scan lines oftlat are directly computed from the intensity profile. Areth
cylindrical panorama. Then, 1D features are extractedtijre approach designed for wide baseline point matching on
from such kinds of images. affine invariant regions was also proposed in [Goedeme04]
and is application on robot localization with omnidirecta

In this paper, we deal with real world vertical featuregmaging was demonstrated in [Sagues06].
because they are predominant in structured environments.
In our experiments, we used a wheeled robot equippedThe methods cited above were defined for perspective
with a catadioptric omnidirectional camera with the mirroimages but the same concepts have been also used by
axis perpendicular to the plane of motion (Fig. 1). If theoboticians in omnidirectional images under certain
environment is flat, this implies that all world vertical di& circumstances. The use of omnidirectional vision even
are mapped to radial lines on the camera image plane. facilitated the task because of ti360° field of view (see

[Yagi9l], [Brassart00], [Prasser04]). However, to match

The use of vertical line tracking is not new in thevertical lines among different frames only mutual and
Robotics community. Since the beginning of machine visiotgpological relations have been used (e.g. neighborhood or
roboticians have been using vertical lines or other sorts ofdering constraints) sometimes along with some of the
image measure for autonomous robot localization or plasenilarity measures cited above (e.g. SSD, NCC).
recognition.
Several works dealing with automatic line matching have Finally, another important issue to be addressed when using
been proposed for standard perspective cameras and cam lssion sensor in mobile robotics is the extrinsic calilomat
divided into two categories: those that match individuakli of the camera with respect to the robot odometry, i.e. the
segments; and those that match groups of line segmemistimation of the parameters characterizing the transform
Individual line segments are generally matched on thedion between the two references attached respectively @en th
geometric attributes (e.g. orientation, length, extent obbot (robot origin) and on the vision sensor. When a given
overlap) (see [Medioni85], [Ayache90], [Zhang94]). Someask is performed by fusing vision and odometry data, the
such as [Crowley90], [Deriche90], [Huttenlocher93] usperformance will depend on this calibration. The problem
a nearest line strategy which is better suited to imag# sensor-to-sensor calibration in robotics has recengly r
tracking where the images and extracted segments are simit@ived significant attention and a number of approaches have
Matching groups of line segments has the advantage tiaen developed (e.g., for IMU-camera [Mirzaei07], robot-
more geometric information is available for disambiguatio body camera [Hesch08], or laser scanner-camera [Zhang04],
A number of methods have been developed around the id8garamuzza07b]). However, very little attention has been
of graph-matching (see [Ayache87], [Horaud89], [Gros95¢levoted to determining the odometry-camera transformatio
[Venkateswar95]). The graph captures relationships swch Ehis is necessary in order to correctly fuse visual infoiorat
“left of”, “right of”, cycles, “collinear with” etc, as well and dead-reckoning in robot localization and mapping. In
as topological connectedness. Although such methods ¢his paper, we focus on auto-calibration, that is, withoseru
cope with more significant camera motion, they often haveigtervention.
high complexity and again they are sensitive to error in the
segmentation process. ¢ outline

Besides these methods, other approaches to individual linelhis paper proposes two contributions. In the first part of
matching exist, which use some similarity measure commortlye paper, we describe how we build our robust descriptor for
used in template matching and image registration (e.g. Swertical lines. We show that the descriptor is very disfirect
of Squared Differences (SSD), simple or Normalized Crosand is invariant to rotation and slight changes of illumioat
Correlation (NCC), image histograms (see [Gonzalez02])).

An interesting approach was proposed in [Baillard99]. Besi  In the second part of the paper, we introduce a strategy
using the topological information of the line, the authorbased on the Extended Kalman Filter (EKF) to perform
also used the photometric neighborhood of the line fawutomatically the estimation of the extrinsic parametefs o
disambiguation. Epipolar geometry was then used to provitlee omnidirectional camera during the robot motion. The
a point to point correspondence on putatively matched lirsérategy is theoretically validated through an obseritgbil
segments over two images and the similarity of the linemalysis which takes into account the system nonlinearitie
neighborhoods was then assessed by cross-correlatior atlthparticular, it is theoretically shown that only one featu
corresponding points. suffices to perform the calibration.

This paper extends our two previous works [Scaramuzza07]

A novel approach, using the intensity profile along the linend [MartinelliO6].
segment, was proposed in [Tell0O]. Although the applicatio
of the method was to wide baseline point matching, the The present document is organized as follows. First, we
authors used the intensity profile between two distinct {goindescribe our procedure to extract vertical lines (Sectipn |
(i.e. a line segment) to build a distinctive descriptor. Thand build the feature descriptor (Section Ill). In Sectidh |
descriptor is based on affine invariant Fourier coefficientge provide our matching rules while in Sections V and VI we
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characterize the performance of the descriptor. In Se&tibn a circular mask (the same radius of the circle to be detected)
we describe the calibration problem, while in Section VIE wwhich is convolved with the binary edge image. The output of
provide the equations to build the EKF. In Section 1X, we wilthis convolution is an accumulator matrix where the positio
present experimental results which validate both the #tea of the maximum coincides with the position of the circle
contributions. center.

The second step is the computation of the image gradients.
We compute the two componeritg, I, of the image gradient
by convolving the input imagd with the two 3 x 3 Sobel
masks. Fromiy, I,, we can calculate the magnitudd and
the orientation® of the gradients as

M = /L, + 1,2 & = atan(I,/L). 1)

Then, we do a thresholding oM, ® by retaining those
vectors whose orientation looks towards (or away from) the
image center up tot5°. This 10 tolerance allows us to
handle the effects of floor irregularities on the appearasfce
vertical lines. After this thresholding, we apply edge thimg
and we obtain the binary edge map depicted in Fig. 3.

The third step consists in detecting the most reliable
vertical lines. To this end, we divide the omnidirectional
image into 720 predefined uniform sectors, which give us an
angular resolution of 05 By summing up all binary pixels
that vote for the same sector, we obtain the histogram shown
in Fig. 4. Then, we apply non-maxima suppression to identify
all local peaks.

The final step is histogram thresholding. As observed in

Fig. 1. The robot used in our experimets equipped with encsdesors, Fig. 3, there are many potential vertical lines in struafure
omnidirectional camera, and two laser range finders environments. In order to keep the most reliable and stable
lines, we put a threshold on the number of pixel of the
observed line. As observed in Fig. 4, we set our threshold

[I. VERTICAL LINE EXTRACTION equal to 50% of the maximum allowed line length, i.e.

Our platform consists of a wheeled robot equipped with Bmaz — REmin.- An example of vertical lines extracted using
catadioptric omnidirectional camera (see Fig. 1). The maifis thresold is shown if Fig. 5.
advantage of such kind of camera is that it provides a° 360
field of view in the azimuth plane. In our arrangement, we
set the camera-mirror system perpendicular to the floor &her [1l. BUILDING THE DESCRIPTOR
the robot moves. This setting guarantees that all vertinakl In Section IV, we will describe our method for matching
are mapped to radial lines on the camera image plane (Fig.2}ical lines between consecutive frames while the robot
In tr_ns schon, we detail our progedure tp extract promtinepy moving. To make the feature correspondence robust to
vertical lines. Our procedure consists of five steps. false positives, each vertical line is given a descriptoicwh

) ) ) o _is very distinctive. Furthermore, this descriptor is insat
The f|_rst step toward yertlcal Ilne_extractlon is the d_etm_:tl to rotation and slight changes of illumination. In this way,
of the image center (i.e. the point where all radial linegqing the correspondent of a vertical line can be done by
intersect in). As the circular external boundary of the omir |oqking for the line with the closest descriptor. In the next

is visible in the image, we used a circle detector to deteemig,psections. we describe how we built our descriptor.
the coordinates of the center. Note that because the diamete '

of the external boundary is known and does not change

dramatically during the motion, the detection of the center ) )

can be done very efficiently and with high accuracy off- Rotation Invariance

every frame (this guarantees to cope also with the vibration Given a radial line, we divide the space around it into three
of the platform). The circle detection algorithm works irequal non-overlapping circular areas such that the radjus
the following way: first, the radius of the circle has to bef each area is equal tQR,,,... — Rmin)/6 (se€ Fig. 6).
computed from a static image. Then, for each frame we u$hen, we smooth each area with a Gaussian window with
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Fig. 2. Animage taken by our omnidirectional camera. We used EDKRN-
360-One-VR hyperbolic mirror and a SONY CCD camera the resolubf
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640480 pixels. The camera used in shown in Fig. 1.
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Fig. 3. Edge image of Fig. 2.
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Fig. 4. Number of binary pixels voting for a given orientatiangle.
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Fig. 5. Extraction of the most reliable vertical featuresrfran omnidirec-
tional image.

oa = 14/3 and compute the image gradients (magnitdde
and orientation®) within each of these areas.

Concerning rotation invariance, this is achieved by redtin
the gradient orientatio® of all points relatively to the radial
line’s angled (see Fig. 6).

B. Orientation Histograms

To make the descriptor robust to false matches, we split
each circular area into two parts and consider each one
individually (Fig. 7). In this way, we preserve the infornoet
about what we have on the left and right sides of the feature.

For each side of each circular area, we compute the gradient
orientation histogram (Fig. 8). The whole orientation spac
(from -7 to «) is divided into N, equally spaced bins. In
order to decide how much of a certain gradient magnitude
belongs to the adjacent inferior binand how much to the
adjacent superior bin, each magnitudeis weighted by the
factor (1 — w), where

—b
w= Ny, )
2
with ¢ being the observed gradient orientation in radians.
Thus,m(1 — w) will vote for the adjacent inferior bin, while
muw Will vote for the adjacent superior bin.

According to what we mentioned so far, each bin contains
the sum of the weighted gradient magnitudes which belong to
the correspondent orientation interval. We observed thiat t
weighted sum made the orientation histogram more robust to
image noise. Finally, observe that the orientation histogrs
already rotation invariant because the gradient oriemtatias
been redefined relatively to the radial line’s angle (Sectio
[I-A).



THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, VOL. 28, ISSUE BEBRUARY, 2009 5

Left section Right section
25 12

50

100 20

150 s

200
10

250

Sum of gradient magnitude
Sum of gradient magnitude

[

300

[ |

B T@j T?W%
0 10 20 30 0 10 20 30

Bin index Bin index

350

400

Fig. 8. An example of gradient orientation histograms for #fé &nd right
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Fig. 6. Extraction of the circular areas. To achieve rotafinvariance, the in relative magnitude for some gradients, but are lessylikel
gradient orientation® of all points is redefined relatively to the radial Iine’sto affect the gradient orientations. Therefore, we redinee t
angled. influence of large gradient magnitudes by clipping the value
General direction of in each unit histogram vgc_:tor SO tha_lt each bin is_ no larger tha
the vertical feature 0.1, and then renormalizing to unit length. This means that
A matching the magnitudes for large gradients is no longer as
important, and that the distribution of orientations hasager
emphasis. The value 0.1 was determined experimentally and
will be justified in Section VI.
Part Part
I I I To recap, our descriptor is aN-element vector containing
the gradient orientation histograms of the circular argaeur
setup, we extract 3 circular areas from each vertical featur
and use 32 bins for each histogram; thus the length of the
descriptor is

Fig. 7. The two sections of a circular area. N = 3areas - 2parts - 32bins = 192 (5)

Observe that all feature descriptors are the same length.
To recap, in the end we have three pairs of orientation

histograms: IV. FEATURE MATCHING

H; = [Hy 1, Hy R] _ . . .

As every vertical feature has its own descriptor, its
Hp = [Hz 1, Hz R] @) correspondent in consecutive images can be searched among
Hs3 = [H3 1., Hs r] the features with the closest descriptor. To this end, wel nee

. . . . . to define a dissimilarity measure (i.e. distance) betweem tw
where subscripts L, R identify respectively the left anchtig descriptors

section of each circular area.

In the literature, several measures have been proposed for
C. Building the Feature Descriptor the dissimilarity between two histogrand = {h;} and

From the computed orientation histograms, we build tH€ = {k:}. These measures can be divided into two categories.

final feature descriptor by stacking all three histograntspai! "€ bin-by-bin dissimilarity measures only compare contents
as follows: of corresponding histogram bins, that is, they comphare

) and k; for all 4, but noth; and k; for ¢ # j. The cross-bin
measures also contain terms that compare non-corresgpndin
To have slight illumination invariance, we pre-normalizele bins. Among the bin-by-bin dissimilarity measures, fall
histogramH; to have unit length. This choice relies on théhe Minkoski-form distance, the Jeffrey divergence, tpe
hypothesis that the image intensity changes linearly wigltatistics, and the Bhattacharya distance. Amongtbss-bin
illumination. However, non-linear illumination changeanc measures, one of the most used is the Quadratic-form
also occur due to camera saturation or due to illuminatiatistance. An exhaustive review of all these methods can be
changes that affect 3D surfaces with different orientatibp found in [Bhattacharya05], [Rubner00], [Rubner01].
different amounts. These effects can cause a large change

H - [HlaH27H3]
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. T . TABLE |
In our work, we tried the dissimilarity measures mentionedr,e pisTances BETWEEN THE DESCRIPTOR 1 AT TIME £4 AND ALL

above but the best results were obtained using ihedis- DESCRIPTORSB; , j = 1,2, .., Np AT TIME tp
tance (i.e. Euclidean distance) that is a particular cashef

Minkoski-form distance. Therefore, in our experiments we
used the Euclidean distance as a measure of the dissigilarit
between descriptors, which is defined as: TABLE Il

THE PARAMETERS USED BY OUR ALGORITHM WITH THEIR EMPIRICAL
VALUES

Bl B2 B3 B4 BS
0.57 | 0.72 | 0.74 | 0.78 | 0.83

(6)

=105 F>=075 F3=08

- . C. Test 3
By definition of distance, the correspondent of a feature, ) )
in the observed image, is expected to be the one, in ihegFinally, the third test checks that the distance from the

consecutive image, with the minimum distance. However, ifg0Sest descriptor is smaller than the distance from thersec
feature is no longer present in the next image, there will beCkpsest descriptofminD;:

closest feature anyway. For this reason, we defined thrée tes minD; < Fy - SminD;, (10)

to decide whether a feature correspondent exists and which -

one the correspondent is. Before describing these testss lewhere F;3 clearly ranges from 0 to 1. As in the previous test,

introduce some definitions. the third test raises from the observation that, if the atrre
correspondence exists, then there must be a big gap between
Let {A1,Az,...,ANn,} and{B1,B,,...,Bn, )} be two the closest and the second closest descriptor.

sets of feature descriptors extracted at timeandt g respec- _
tively, where N4, N are the number of features in the first In Table I, we show an example of real comparison among

and second image. the distances between descriptédr; at time ¢4 and all
Then, let descriptorsB; at time¢p. Observe that descriptd8; is not
the correct correspondent df;. In fact, it passes test 1 and
D; ={d(A;,B;),j =1,2,...,Np)} (7) 3 butnot 2.

Factors Fy, Fy, F3 were determined experimentally. The
be the set of all distances between a giv&p and all B; values used in our experiments are shown in Table Il. The

(j=1,2,---,Np). choice of these values will be motivated in Section VI.
Finally, let minD; = min; (D;) be the minimum of the

distances between giveA; and all B; and SminD; the V. COMPARISON WITH OTHERIMAGE SIMILARITY
distance to the second closest descriptor. MEASURES

A good method to evaluate the distinctiveness of the descrip
tors in the observed image is to compute a similarity matrix
A Test 1 S where each elemer8(i, j) contains the distance between

The first test checks that the distance from the closeﬂs1te ith and;jth descriptor. That is,

descriptor is smaller than a given threshold, that is: S(i,j) = d(H;, Hy), (11)

minD; < F). 8) whereH_i is the Qescriptor of théth radial Iir_1e an_d dista_nce
d is defined as in (6). Observe that to build this matrix we
fompute the radial line’'s descriptor for evefyc [0°, 360°].
We used af increment of1° and thusi = 1,2,...,360.
Furthermore, note tha is symmetric and tha8(i,j) = 0

for i = j. The similarity matrix computed for the image of

By this criterion, we actually set a bound on the maximu
acceptable distance to the closest descriptor.

B. Test 2

The second test checks that the distance from the closes
descriptor is smaller than the mean of the distances from gll|
other descriptors, that is:

40

minD; < Fy- < D; > (9) 60

50 100 150 200 250 300 350

where< D; > is the mean value ob; and F; clearly ranges _ o ) ) L

f 0 to 1. Thi iterion m t of experimental ItFlg. 9. This is the same image of Fig. 6 after unwrapping intolandsical

rom o 1. IS Criterion comes out of experimental resu ﬁanorama. The rectangular region used to compute SSD and ZBl@Sa
shown.
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Fig. 6 is shown in Fig. 10.

In this section, we want to compare our descriptor with
other two image similarity measures that are well known in
image registration and are also commonly used for matching
individual lines. These are Sum of Squared Differences (SSD
and Zero mean Normalized Cross-Correlation (ZNCC) (their
definitions can be found in [Gonzalez02]). When using SSD
and ZNCC for comparing two patterns, the pattern descriptor
can be seen as the pattern intensity. In our case, we take as a
pattern the rectangular region around the observed rddal |
as shown in Fig. 9. As we did to build the similarity matrix for
our descriptors, we compare given patt&nwith patternP
using either SSD or ZNCC and build the respective similarity
matrices, that is:

SSD(P;,Pj),
ZNCC(P;,P;),

(12)
(13)

Sssp(i,j) =
Szncel(i,j) =

The two similarity matrices for the image in Fig. 6 are shown
in Fig. 11 and 12. Concerning the sizén of the patterns for
computing SSD and ZNCC, we chos@n = 2r,. Observe
that this choice is reasonable 2, is also the size (diameter)

of the three circular areas used to build our descriptor.
Furthermore observe that, for SSD, maximum similarity
between two patterns occurs when SSD=0. Conversely,
for ZNNC, maximum similarity (correlation) occurs when
ZNCC=1; however, observe that Fig. 12 has been inverted
to enable comparison with figures 10 and 11 (this means
that black indicates maximum similarity and white minimum
similarity).

To interpret the similarity matrix, consider points along
the diagonal axis in Fig. 10. Each point is perfectly similar
to itself, so all the points on the diagonal are dark. Stgrtin
from a given point on the diagonal, one can compare how its
correspondent descriptor relates to its neighbors forvasudi
backward by tracing horizontally or vertically on the matri
To compare given descript®l; with descriptorH, . ,,, simply
start at point(é, ) on the matrix and trace horizontally to the
right to (i,i + n).

In the similarity matrix for SSD, one can see large blocks
of dark which indicate that there are repeating patternfién t
image or that the patterns are poorly textured. Rectangular
blocks of dark that occur off the diagonal axis indicate
reoccurring patterns. This can be better understood by
observing Fig. 9. As observed, there are poorly textured
objects and repeating structure.

Similar comments can be done regarding the similarity
matrix for ZNCC. However, observe that the behavior of
ZNCC is better than SSD: first, the size of the blocks along or
off the diagonal axis is smaller; then, points on the diagjona
are much darker than points off the diagonal.

Regarding the similarity matrix of our descriptor the diago
nal axis is well demarcated, in fact points on the diagonal ar
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much darker than those off the diagonal; the contrast wigh th ‘ | niuence ofsauraton o coreet maiches :
regions off the diagonal is higher than ZNCC. Finally, obser /0*\ . i
that blocks along or off the diagonal axis are much smaller or o6 el .

lighter than SSD and ZNCC; this indicates that even on poorly 074 . T

textured surfaces our descriptor is distinctive enoughs T
mainly due to use of the gradient information and to the fact

Correct matches [percent]
°
2

of having split the region around the line in three areasesut f
of taking the entire region as whole. 06 “
|

0.64 “‘

VI. PERFORMANCEEVALUATION o.e‘

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Saturation

In this section, we characterize the performance of our
descriptor on a large image dataset by taking into accodr 13-
the sensitiveness to different parameters, which are image
saturation, image noise, number of histogram bins, and use _fuence of e fvel n corect matches
of overlapping circular areas. Furthermore, we also mtgiva
the choice of the values dfy, F», and F3 shown in Table 1. o

Influence of saturation on correct matches.

Matches —@)—

1) Ground truth: To generate the ground truth for testing
our descriptor, we used a database of 850 omnidirectional
pictures that is a subset of the video sequence (1852 images)
used in Section IX-A. First, we extracted verticals linesnfir
each image. Then we manually labeled all the corresponding 0z
features with the same ID. The images were taken from 01
the hallway of our department. Figure 21 shows three o - o = - -
sample images from our dataset. The images show that the Nofs level (standard deviaton of gaussan noie)
illumination conditions vary strongly. Due to big WindOWS’Fig. 14. Influence of noise leve¥{) on correct matches. The correct matches
a mixture of natural and artificial lighting produces difficu are found using only the nearest descriptor in the database.
lighting conditions like highlights and specularities.

Correct matches [percent]

In the following subsections, we characterize the 4) Histogram bins and circular areas. There are two
performance of our descriptor. We would like to remark thgiarameters that can be used to vary the complexity of
the features of each image were matched against all the otber descriptor: the number of orientation bin&j in the
images of the dataset where the same features appeahistograms and the number of circular areas. Although in
Furthermore, the images of our dataset were taken such tiiet explanation of the descriptor we used 3 non overlapping
each vertical line could be continuously observed for astleecircular areas, we evaluated the effect of using 5 overtappi
2 meters of translational motion. This means that the featurareas with50% overlap between two circles. The results
were matched also among images with strong baseline (upai@ shown in Fig. 15. As the graph shows, there is a slight
2 meters). improvement in using 5 overlapping areas (the amelioration

is only 1%). Also, the performance is quite similar using 8,

2) Image saturation: As we mentioned in Section III-C, 16, or 32 orientation bins. Following this consideratiotie
we limit the values of the histogram vectors to reduce tHgest choice would seem to use 3 areas and 8 histogram bins
influence of image saturation. The percentage of corrdotorder to reduce the dimension of the descriptor. However,
matches for different threshold values is shown in Fig. 18te chose to use 32 orientation bins. For 32 bins, in fact, we
The results show the percentage of features that find a ¢oread the biggest separation between the probability density
match to the single closest neighbor in the entire datalfese.functions of correct and incorrect matches shown in figures
the graph shows, the maximum percentage of correct matciés 17, and 18. Finally observe that we considered powers
is reached when using a threshold value equal to 0.1. In the2 due to computational efficiency. The final computation
remainder of this paper, we will always use this value. time of the entire process (feature extraction, descriptor

computation, and matching) took less than 20 ms on a

3) Image noise: The percentage of correct matchegual-core laptop computer.
for different amounts of gaussian image noise (frO¥
to 10%) is shown in Fig. 14. Again, the results show 5) Matching rules. Figure 16 shows the Probability
the percentage of correct matches found using the singdensity Function (PDF) for correct and incorrect matches
nearest neighbor in the entire database. As this graph shoinsterms of the distance to the closest neighbor of each
the descriptor is resistant even to large amounts of pixiseno keypoint. In our implementation of the first rule, we chose

Fy = 1.05. As observed in the graph, by this choice we reject
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Influence of number of bins on correct matches
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Fig. 15. Influence of number of bins on correct matches.

Fig. 17. The probability density function that a match is eotraccording
to the second rule.
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Fig. 16. The probability density function that a match is eotraccording
to the first rule.

Fig. 18. The probability density function that a match is eotraccording
to the third rule.
all matches in which the distance to the closest neighbor is
greater thanl.05, which eliminatess0% of the false matches ) . .
while discarding less thai% of correct matches. measuring the position of the camera with respect to the
robot frame. In this section, we describe a new method that
Similarly, Fig. 17 shows the PDFs in the terms of the ratigSeS an EKF to extrinsically and automatically calibrate th
of closest to average-closest neighbor of each keypoint. GAMera while the robot is moving. The approach is similar
our implementation of the second rule, we chdse= 0.75. to that we presented in [Martlngll|06] where just a _smgle
As observed in the graph, by this choice we reject all matchié§dmark (we used a source of light) was tracked during the
where the ratio between the closest neighbor distance 4Rgtion to perform calibration. In this section, we extené th
the mean of all other distances is greater tiifs, which method in [MartinelliO6] by providing the EKF equations to

eliminates45% of the false matches while discarding les§°P€ With multiple features. The features in use are vertica
than8% of correct matches. features which are extracted and tracked as described in the

previous sections.

Finally, Fig. 18 shows the PDFs in terms of the ratio of o )
closest to second-closest neighbor of each keypoint. In oudn order to simplify the problem, we do the following
implementation of the third rule, we chosg& = 0.8; in assumptions; we assume that the robot is moving in a flat
this way we reject all matches in which the distance ratio &vironment and that it is equipped with an omnidirectional
greater thar0.8, which eliminates92% of the false matches Camera whose-axis is parallel to the-axis of the robot, that

while discarding less that0% of correct matches. is, the mirror axis is perpendicular to the floor. According
to this, the three-dimensional camera-odometry calibnati

problem becomes a two-dimensional problem.
VII. CAMERA-ROBOT SELF-CALIBRATION : THE PROBLEM Our first goal is the estimation of the three parametgrs
Accurate extrinsic calibration of a camera with the, v which characterize the rigid transformation between the
odometry system of a mobile robot is a very importarittvo references frames attached respectively to the robdt an
step towards precise robot localization. This stage is Iysuato the camera (see Fig. 19).
poorly documented and is commonly carried out by manuallyhe second goal is to perform calibration automatically and
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while the robot is moving. )

The available data are the robot wheels displaceménts o = tan—! (yR +psin(Or + fb)) 17)
anddpy, (see later) delivered by the encoder sensors and the zp+ pcos(Or + @)

bearing angle observatiomsof several features in the camera

reference frame (Fig. 19).

VIIl. EKF BASED CALIBRATION
1

Xeavtera 1 An intuitive procedure to determine parametefs p, ¥
A TP}'I is to use the data from the encoders to estimate the robot
/ configuration (provided that the initial robot configuratio
p Camera Reference is known). Then, by measuring the bearing angleat
) several different robot configurations (at least three)isit
earni o possible to obtain parametets p, ¢ by solving a non linear
Iy system in three unknowns. However, the drawback of this
Yiosor 9 _6 method is that, when the robot configuration is estimated
//;, \_ by using only the encoder data, the error integrates over
Yr f—m————— S ——— (e e e o e e the path. This means that this procedure can be applied
i only for short paths and therefore the achievable accuracy
/( o ! on the estimation ofp, p, ¢ is limited. Furthermore, the
O Y | initial robot configuration has to be known with high accyrac
)
\ | > One way to overcome these problems is to integrate the
Feature Reference Xe encoder data with the bearing angle measurements to estimat

Fig. 19. The two reference frames respectively attached gordbot and the robot configuration. ThIS can be done .by mt_rOducmg an
to the camera. The five parameters estimated by the EXP (¢, p,v) are augmented statX, containing the robot configuration and the
also indicated. calibration parameters, p, 1

— T
As we consider the case of a mobile robot moving ia Xa = [r, YR, Or, ¢, p; V)] (18)
environment, its configuration is described through theesta

Xr = [zRr,yr,0r]% containing its position and orientation . .
(as indicated in Fig. 19). Furthermore, we consider the ofse An EKF can be adopted to estimate the sidie The inputs

a robot equipped with a differential drive system. The robot of the dynamics of this state are directly proylded by the
encoder data and the observatiansire the bearing angles

gﬁggggﬁ;‘g& XIP; C:rr:ictglzrr] \?vee Ezt\llr:_ated by integrating th%rovided by the vision sensor. However, as it was pointed
NP ' ’ out in [MartinelliO6], by considering the system staXg, as

defined in (18) the system is not observable, that is, it doés n

TR, = g, + Opicos(Og, + 59"') contain all the necessary information to perform the egiona
YRy = Yr + Opisin(Om, + %) (14) with an error which is bounded. Conversely, in [Martineljo
Opiyn = Ogr, + 90; it was proved that the system becomes observable if, instead
of consideringX,, we introduce a new statX defined as
follows:
where quantities)p and §0 are related to the displacements
dpr anddpy, (respectively of the right and left wheel) directly X = [D,8, ¢, p, 07, (19)

provided by the encoders through:

with D = /2% +y% and 6 = g — tan™* (g—ﬁ) (see Fig.

_ Spr + 6 50— Spr — 6. 19). Note also thab is the distance from the observed feature.

1)
p 2 ’ e

(15)
Observe that, without loss of generality, we can use
X instead of X,. In fact, X, contains the whole robot
wheree is the distance between the wheels. configuration whose estimation is not our goal, indeed we
just want to estimate parametefs p, 1.
For a particular bearing angle observati@nwe obtain the

following analytical expression (see Fig. 19):

A. Observability Properties with Respect to the Robot Trajec-
tory

=1—¢Y—0gp—0¢+a 16 . , .

p V=O0r=9 (16) In control theory, a system is defined observable when it

with is possible to reconstruct its initial state by knowing, in a
given time interval, the control inputs and the outputs (see
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[Isidori95]). The observability property has a very praati Furthermore, we denote witti{) the space spanned by the
meaning. When a system is observable it contains all theadients of the elements 6f.
necessary information to perform the estimation with anrerr
which is bounded (see [Isidori95]). In this notation, the observability rank condition can
be expressed in the following waythe dimension of the

In this section, we investigate the observability proarti observable sub-system at a given X is equal to the dimension
for the stateX with respect to the robot trajectories. Ouwnf df).
analysis takes into account the system non-linearitietedd,
the observability analysis changes dramatically fromdme In [MartinelliO6] it was shown that the staf€ satisfying the
to nonlinear systems (see [Isidori95]). First of all, in thelynamics in (20) is observable when the observation is tlee on
nonlinear case, the observability is a local property. Fgiven in (23). Here we want to investigate the observability
this reason, in a nonlinear case the concept of lheal properties depending on the robot trajectory. In particule
distinguishability property was introduced by Hermann andwill consider separately the case of straight motion andk pur
Krener (see [Hermann77]). The same authors introduced afstations about the robot origin. Furthermore, we will ddes
a criteria, the observability rank condition, to verify if a separately the case when the observed feature is far from the
system has this property. This criteria plays a very imprtarobot and the case when it is close. Before considering the
role since in many cases a nonlinear system, whose assbciatentioned cases separately we observe fhdépends onX
linearized system is not observable, has however the lodatough the ratio\ = % and the sumy = 6 + ¢:
distinguishability property. Note that it is the distingbability
property which implies that the system contains the necgssa 3 = atan ( siny ) N (24)
information to have a bounded estimation error (actually, A+ cosy
provided that the locality is large enough with respect ® th

The case of far feature and close feature corresponds
Sensor accuracy).

respectively to have, >> 1 and A ~ 1. In the first case

th b ted with:
The dynamics of our system is described through thee expression o can be approximated wi

following equations:

BE-0-—0-1 (25)
D =wv cosf
=w—% 2
Z _°; i Smoe (20) 1) Pure Rotations and far feature: This motion is obtained

by settingu; = 0. Hence, the Lie derivatives must be
Our system is affine in the input variables, i.e. the previousiculated only along the vectof,. The observation is the
equations can be written in the following compact form:  one given in (25). It is easy to realize that the dimension of
dQ) is 1 (the first order Lie derivative is equal to -1, i.e. is a
. constant). This result is intuitive: the observation in)(@6es
X = f(X, 21 k ) X L
u) Z f(X (1) not provide any information o andp and it is not able to

distinguish amond, ¢ and+. Furthermore, the pure rotation

_ where M is the number of the input controls (which argy,aq ot provide any additional information. Hence, it iyon
independent). In our case = 2 and the controls are; = v, possible to observe the sun+ ¢ + ¢

ug = w and

) - 2) Sraight motion and far feature: This motion is obtained
f= [0089,_51119 0.0 0} f2=10,1,0,0,0"  (22) by setting us = 0. Hence, the Lie derivatives must be
calculated only along the vectgi. We note thatf; depends
The observation is defined by the equation only on ¢ and D. Furthermore /5 = —6 — 1 (having defined
(8 n = ¢+1). Hence, the best we can hope is that the following
8; = tan~! ( —pisin(0; + ¢:) ) — 9, — ¢ — ;. (23) Qquantities are observabl@, ¢, 1. In the Appendix we show
—D; — p; cos(b; + ¢) that this is the case.

We now want to remind some concepts in the theory 3) Pure Rotation and close feature: Let us consider the
by Hermann and Krener in [Hermann77]. We will adopstate X, = [\,7,¢,p,¥]T. When X = wf, we haveX), =
the following notation. We indicate the(*" order Lie wf>. Onthe other handf;, is independent oX . Furthermore,
derivative of a fieldA along the vector fields;,,v;,,...,v;, the expression in (24) depends only an~y and . Hence,
with LK _ A Note that the Lie derivative is notthe best we can hope is that are observable the quantities:

commutative. In ‘particular, i .. Aitis assumed 7 and¢. In the Appendix we show that this is the case.

to differentiate alonguv;, first and alongv“{ at the end.

Let us indicate with{2 the space spanned by all the Lie 4) Sraight motion and close feature: This is the hardest
denvatlvest Tig oo fin h(X)|i=0 (i1,....ix = 1,2,...,M case. A priori, it is not possible to exclude that the entire

and the funcUong‘; are defined in (22)). state X is observable. However, a direct computation of the
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dimension o2 (see the Appendix) shows that this dimension
is smaller tharb, meaning thatX is not observable. M D} + 6p; cos 0} T

0} + 66; — 6;)1 sm@1

We conclude this section with the following important
remark. It is possible to estimate the parameigrsp and D? + 6p; cos 6?
1) by combining a straight motion far from the feature with
pure rotations close to the feature. Indeed, by performireg t
first trajectory it is possible to observe the sutnt+ ¢, D
and 6. Once the robot starts to rotat®) does not change.

0? + 60; — i sin 67

Xiy1 = f(Xiw) = : (29)

Furthermore, the sung + ¢ is time independent. On the DZ + §p; cos 07
other hand, with the pure rotatiox) ~, and are observable.
Therefore, from the values ok and D it is possible to 07 +60; — 22 blnez
determinep, and from and the sumyp + ¢ it is possible
to determinegp. ¢i

Pi

P

B. The Filter Equations L .

with u = [6pg,dpr]T.
By using D, ¢, and Equation (14), we obtain the followingregarding the observation functién from (27) we have:
dynamics for the statX:

Bl
Di+1 = D1 + (5,01 COS 91 ﬂz
Oiy1 = 0;+90; — 6[/;; sin 6; h(Xi) = L=
bit1 = Gi (26) :Z
pit1 = pi bi
Yiy1 = Vi (0} +¢:)
r —1 —p; sin 0} +¢i ]
tan ( Dl—p; cos(91+¢z ) Z
where, from now on, subscriptwill be used to indicate the _ | tan™! ( D_z’fgmizs(;f;d) ) (05
time. B "
Similarly, the bearing angle observatiofis(16) can be read tan~! ( D_Z‘f;m(cis(;ﬁ +) ry )) — 07 — ¥
as: i ~(30)

. The previous equations, along with a statistical error rhode

8; = tan™! ( —pisin(0; + ¢:) ) — 0, — ¢; —b; (27) Of the odometry (we used the one by Chong and Kleeman
D; — p; cos(0; + ¢;) [Chong97]), allow us to implement an EKF to estim&Xe

In order to implement the standard equations of the EKF, we

Observe that so far we have taken into account only tRged to compute the JacobiaRg and F, of the dynamics
observation of a single feature. Because we want to cope wié®) With respect to the staf& and with respect to encoder

multiple features, we need to extend the definitionXo{19) readings §pr anddpr). Furthermore, we need to compute
as follows: the JacobiarH of the observation function (30) with respect

to X. These matrices are required to implement the EKF (see
[Bar-Shalom88]) and are given in the Appendix.

X =[D',0',D% 6% ...,D% .07, ¢,p,9]",  (28)
Finally, to make the method robust with respect to the

system non linearities, we inflate the covariance matrixatwa
where the superscript identifies the observed featurezaigd (€71Zing the non systematic odometry error. As in the Chong-
the number of features. Kleeman model (see [Chong97]), it is assumed that the tru_e

distance traveled by each wheel during a given time step is
Gaussian random variable. In particular, it is assumet tha
Its mean value is the one returned by the wheel encoder and
the variance increases linearly with the absolute valuéhef t
traveled distance.

6pr/r = N(6pR 1 KdpR/1L) (31)

Before implementing the EKF, we need to compute th
dynamics functionf and the observation functioh, both
depending on the statX. From (26) and using (28), the
dynamicsf of the system can be written as:
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where the index R and L stand respectively for the right
and left wheel, the apex e indicates the value returned by
the encoder and< is a parameter characterizing the non I
systematic error whose value is needed to implement the filte . ] A J
In order to inflate this error, we adopt a value férincreased d e

by a factor5 with respect to the one estimated by previous
experiments (see [Martinelli07]). “ L | f [ e

IX. EXPERIMENTAL RESULTS ME — -

ME A3 434

In our experiments, we adopted a mobile robot with a differ-
ential drive system endowed of encoder sensors on the wheels |
Furthermore, we equipped the robot with an omnidirectional ~— Ch- desMachings——
camera consisting of a KAIDAN 360 One VR hyperbolic SR [ R
mirror and a SONY CCD camera the resolution6df) x 480
pixels. A picture of our platform is depicted in Fig. 1. Filyal
observe that the entire algorithm ran in real-time. In jgatér,
the all process (image capture, feature extraction, degmmi
computation, feature matching) could be computed in lems th
20 ms on a dual-core laptop computer.

5434 ME A3 445

ME A3 444

5 454 ME A5 455 ME A3 454

54 ME A3 455 G ME 23 434

A. Results on feature tracking by using the proposed descrip-
tor

In this section, we show the performance of our feature
extraction and matching method by capturing pictures fropiy. 20. Floorplan of the institute showing the robot path rgd).
our robot in a real indoor environment. Furthermore, we
show that the parameters of the descriptor generalize also
outside of the chosen dataset used for “learning” in Sedtion between track no. 84 and 86, and between track no. 65 and

69). Observe that the three huge jumps in the graph are not

The robot was moving at aboud.15 m/s and was false matches; they are only due to the angle transition from
acquiring frames a8 Hz, meaning that during straight paths—m to 7.
the traveled distance between two consecutive frames was
5 ¢m. The robot was moved in the hallway of our institute Observe that our method was able to match features even
along the path shown in Fig. 20. 1852 frames were extractethen their correspondents were not found in the previous
during the whole path. Figure 21 shows three sample imadeames. This can be seen by observing that sometimes circles
from the dataset. The images show that the illuminatiomse missing on the tracks (look for instance at track no.
conditions vary strongly. 52). When a correspondence is not found in the previous

frame, our tracking algorithm starts looking into all prews

The result of feature tracking is shown only for the first 15ames (actually up to twenty frames back) and stops when a
frames in Fig. 22. The video sequence from where this grapbrrespondence is found.
was generated can be found in the multimedia extension of
this paper (Appendix A). In the video, every vertical line By examining the graph, one can see that some tracks are
is labeled with the corresponding number and color witbuddenly given different numbers. For instance, obserae th
which it appears in Fig. 22. The graph shown in Fig. 22 wdeature no. 1 - that is the first detected feature and starts at
obtained using only the three matching rules described fimme no. O - is correctly tracked until frame no. 120 and is
Sections IV-A, IV-B, IV-C. No other constraint, like mutualthen labeled as feature no. 75. This is because at this frame n
and topological relations, has been used. This plot retees t correspondence was found and then the feature was labeled
short path of the whole trajectory while the robot was movings a new entry (but in fact is a false new entry). Another
straight (between frame no. 0 and 46), then doing88° example is feature no. 15 that is then labeled as no. 18 and
rotation (between frame no. 46 and 106), and moving straigim. 26. By a careful visual inspection, one can find only a
again. As observed, most of the features are correctly édickew other examples of false new entries. Indeed, tracks that
over the time. Indeed, most of the lines appear smooth aatda first glance seem to be given different numbers, belong
homogeneous. The lines are used to connect features ihdact to other features that are very close to the obsermed o
belong to the same track. When a new feature is detected,
this feature is given a label with progressive numbering andAfter visually inspecting every single frame of the whole
a new line (i.e. track) starts from it. In this graph, there awvideo sequence (composed of 1852 frames), we found 35 false
three false matches that occur at the points where two trackatches and 101 false new entries. The detection rate ower th
intersect (e.g. at the intersection between tracks no. 158nd entire dataset is shown in Table Il at intervals of 200 frame
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Evolution of the bearing angle for each features

Bearing angle [rad]

50

100 150
Frame

Fig. 22. Feature tracking during the motion of the robotyhaxis is the angle of sight of each feature and in #hexis the frame number. Each circle

represents a feature detected in the observed frame. Lipessemt tracked features. Numbers appear only when a nawdeésidetected. This plot corresponds
to the video contained in the multimedia extension of this pgpee Appendix A).

TABLE Il . .
RECOGNITION RATE when the displacement of the robot between two successive
images was too large. However, observe that when a feature
Frame Number Rate of Rate of Rate of matches with no other feature in previous frames, it is bette
interval of matches correct false false ; ; i i
matches (%) matches (%) new entries (528 believe this feature to be new than commit a false matching
0-200 735 97.48 0.53 1.98 . _
200-400 972 98.58 0.20 1.22 As we already mentioned above, the results reported in
400-600 823 98.68 0.35 096  this section were obtained using only the three matching
600-800 857 97.83 0.80 1.3 X ) . i
800-1000 685 98.13 057 129 rules described in Sections IV-A, IV-B, IV-C. Obviously,eh
1000-1200 740 98.40 0.26 133 performance of tracking could be further improved by adding
1200-1400 906 98.26 0.43 1.30 ; i ; :
1400-1600 784 o7 78 0.62 162 other constraints like mutual and topological relationsoam
1600-1852 771 98.34 0.76 189 features.

B. Calibration Results

Comparing these errors to the 7408 corresponding pairdn our experiments, we adopted the same mobile robot
detected by the algorithm over the whole video sequence, aed omnidirectional camera described in Section [X-A.
had 1.8% of mismatches. Furthermore, we found that falsEurthermore, two laser range finders (model SICK LMS 200)
matches occurred every time the camera was facing objesisre also installed on the robot. Observe that these laser
with repetitive texture (like in Fig 9 or in the second imagscanners are used in our experiments just for comparison and
of Fig. 21). Thus, ambiguity was caused by the presence ae considered already calibrated with the odometry system

vertical elements which repeat almost identical in the sarmaecording to the specifications provided by the manufacture
image. On the other hand, a few false new entries occurred
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Fig. 23. Laser points reprojected onto the omnidirectionahge before
calibration. The edges in the omnidirectional image do notextly intersect
the corners of the laser scan.

Fig. 21. Omnidirectional images taken at different locations

Fig. 24. Laser points reprojected onto the omnidirectiomahge after

. . - . _calibration. The edges in the omnidirectional image appabply intersect
For our experiments, we positioned the omnldlrectlonﬁ,?e comners of the |gser scan. ge app

camera on our robot as in Fig. 1 and we measured manually

its position relative to the robot. We measured the follayvin

values:¢ ~ 0 rad, p ~ 0.2 m, ¢ ~ 0 rad. Figure 23 shows The resulting estimated parameters afe = —0.34rad,

the laser points reprojected onto the omnidirectional ienag = 0.23m and = 0.33rad. The sudden jump starting at

using the above values. As observed, because the relafigane no. 60 actually occurs when the robot starts to rotate.

pose of the camera and the robot references is not accurately

measured, the edges in the omnidirectional image do notAs demonstrated in section VIlI-A, when the robot accom-

correctly intersect the corners of the laser scan. However, plishes a straight trajectory far from the feature, it is giole

used these rough values to initialize our EKF. to observe the sump + ¢, D, and§. Once the robot starts

to rotate,D does not change. Furthermore, the sgim 1) is

The trajectory chosen for the experiments consisted oftime independent. On the other hand, with the pure rotation

straight path, approximately.3 m long, and al80° rotation ), v and are observable. Therefore, as the robot starts to

about the center of the wheels. The trajectory is depictdigin rotate the value op is determined from the values afand D.

25. For this experiments, about ten vertical lines werekec Furthermore, bothy and ) are determined. Note that during

the jump the sung + ¢ is constant. As it was already pointed

The values ofg, p, ¥ estimated during the motion areout in [MartinelliO6], the convergence is very fast when the

plotted as a function of the frame number in Fig. 26. Thebot performs trajectories alternating short straighhpand

covariancessy4, 0, oy are also plotted. Observe that aftepure rotations about the robot origin.

about 60 frames (corresponding to ab@wt m of navigation) Furthermore, extensive simulations in [martinelliO6]pah

the parameters start suddenly to converge to a stable valirat even when the estimation process starts by firstly ngovin
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and performed several experiments on both simulated and
real data by tracking only a single feature. In that work, we
also showed that by choosing suitable trajectories (atarg
T . straight path with pure rotations), it is possible to estana
} the calibration parameters with high accuracy by moving the
E of robot along very short paths (few meters). In this paper, we
extended our previous work to cope with multiple featuresd an
showed that by tracking multiple features the convergence i
faster than using a single feature. Furthermore, the edidr
parameters start to converge when the robot undergoes a pure
2, 2 4 0 1 2 3 4 5 rotation after straight path. Although experiments havenbe
x (m) conducted using an omnidirectional camera, more in general
Fig. 25. The path performed by the robot during self-calibrgti.e. straight the proposed method can be adopted to calibrate any robot

path followed by a rotation. bearing sensor.

The two contributions introduced in this paper allow using
the robot along a straight path (i.e. during this initial pla omnidirectional camera in the framework of mobile robatics
the overall state is unobservable) the EKF is always able ifbparticular in combination with odometry data.
recover, at the end, the true values of the parameters. 8ever
experiments and many simulations showed consistency among ACKNOWLEDGMENT
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Fig. 24 shows the laser points reprojected onto thfym the European Community’s Sixth Framework Programme
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APPENDIXA
INDEX TO MULTIMEDIA EXTENSIONS

The multimedia extensions to this article are at:
http://www.ijrr.org. The video corresponds to the plotoged
in Fig. 22.

TABLE IV
MULTIMEDIA EXTENSION
Extension Type Description
1 Video Feature tracking
APPENDIXB

STRAIGHT MOTION AND FAR FEATURE
We want to prove that the stafé,; = [D, G,n]T_ satisfying
the dynamics:X,; = vf with f = [cosf, —=2¢ 0]T is
observable when the observationds= —60 — 7.

dL°3
iz},
det dgflflﬂ
dﬁflflflﬂ
Lf1f1f1f1ﬁ

This computation was performed by using the symbolic tool

of matlab and the result obtained is zero.

JACOBIANS
The Jacobian¥, andF, of the dynamics are:

A 0 .- 0 00 0]
0 A2 ... 0 0 0 0
Fe=1 0 o AZ 0 0 0 |
0 0 0 1 0 0
0 0 0 0 1 0
L0 0 0 00 1|
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